Featured Research

from universities, journals, and other organizations

Building A Better Painkiller: Neuroscientists Explain Inner Workings Of Critical Pain Pathway

Date:
February 16, 2007
Source:
Brown University
Summary:
Morphine and other opioids are among the most potent painkillers around. For the first time, Brown University neuroscientists explain why these drugs work so well on the calcium channels in the pain pathway, in new research in Nature Neuroscience. The findings not only break ground in basic science, they may aid in the effort to develop safer pain-relieving drugs.

Whether they're fighting postoperative soreness or relieving chronic discomfort from conditions such as cancer, morphine and other opioids are powerful weapons against pain. Now, in research published online in Nature Neuroscience, Brown University scientists give one reason why these painkillers work so well.

The secret: They act on a special form of N-type calcium channel, the cellular gatekeepers that help control pain messages passed between nerve cells. By blocking these channels, pain signals are inhibited. These findings not only shed important light on how the body controls pain, they could be a boon to drug development.

"We've known that drugs such as morphine are highly effective at blocking calcium channels, but we've never known precisely why -- until now," said Brown neuroscientist Diane Lipscombe, who led the research. "With this new understanding of how opioids work on calcium channels, drug companies could develop effective new painkillers."

Lipscombe, a professor in the Department of Neuroscience, is an expert in N-type calcium channels, critical players in the pain pathway. At the synapse -- the point of connection between nerve cells -- N-type channels control the release of neurotransmitters. These chemicals carry messages between nerve cells -- messages that include sensations of pain. So if you block N-type channels, you can block pain.

But all of these channels shouldn't be closed, Lipscombe explained. That's because some pain signals -- "That stove is hot!" -- are needed to survive. "You don't want to shut off all pain signals," she said. "You just want to dampen some of them down."

In 2004, Lipscombe and her colleagues discovered a unique form of the N-type channel in nociceptors, neurons that carry pain signals to the spinal cord. These are the channels that opioids act on. But what makes the channels in nociceptors so special?

In their new work, Lipscombe and her team uncover the answer. All N-type channels are made up of a string of about 2,400 amino acids. In nociceptor N-type channels, that string differs by a mere 14 amino acids, Lipscombe and her team learned. This small difference in molecular make-up makes these channels much more sensitive to the pain-blocking action of opioids.

"In nociceptor N-type channels, you get double-barreled inhibitory action," she explained.

Jesica Raingo, a Brown postdoctoral research fellow, is lead author of the Nature Neuroscience article. Andrew Castiglioni, a former Brown graduate student, participated in the research.

The National Institute of Neurological Disorders and Stroke funded the work.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Building A Better Painkiller: Neuroscientists Explain Inner Workings Of Critical Pain Pathway." ScienceDaily. ScienceDaily, 16 February 2007. <www.sciencedaily.com/releases/2007/02/070215144026.htm>.
Brown University. (2007, February 16). Building A Better Painkiller: Neuroscientists Explain Inner Workings Of Critical Pain Pathway. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2007/02/070215144026.htm
Brown University. "Building A Better Painkiller: Neuroscientists Explain Inner Workings Of Critical Pain Pathway." ScienceDaily. www.sciencedaily.com/releases/2007/02/070215144026.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins