Featured Research

from universities, journals, and other organizations

Nanotube Dermatology

Date:
February 22, 2007
Source:
American Institute of Physics
Summary:
The process by which carbon nanotubes repair themselves has now been explained and modeled in detail. These tubes, sometimes only a nanometer or so in width but microns in length are among the toughest but also flexible materials known. And when they develop a tear, whether through irradiation or the application of extreme heat or strain, they are able to sew themselves back up without any leftover stitches or imperfections.

The microscopic behavior of a carbon nanotube with a tear resembles somewhat the motion of a ladybug. The rip in the nanotube fabric, caused by heating stressing the nanotube, is sewn up in a moving process in which carbon a pentagon-heptagon structure propagates along the tube. (Credit: Reported by Ding et al. in Physical Review Letters / Courtesy of American Institute of Physics)
Credit: Reported by Ding et al. in Physical Review Letters / Courtesy of American Institute of Physics

The process by which carbon nanotubes repair themselves has now been explained and modeled in detail. These tubes, sometimes only a nanometer or so in width but microns in length are among the toughest but also flexible materials known. And when they develop a tear, whether through irradiation or the application of extreme heat or strain, they are able to sew themselves back up without any leftover stitches or imperfections.

The way they do it, a new study conducted by scientists at Rice University shows, is through the propagation of a sort of sliding carbon-repair crew. The crew consists of a pentagon-heptagon phalanx of 10 carbon atoms moving along the tube, filling in the crack created by ejecting carbon atoms and rearranging local bondings as they go. The ejected carbons can either go away or they can be used in the repair work elsewhere.

Repair of other carbon-based material, such as proteins or DNA, is much more complicated and usually leaves behind stitches or other signs of the repair. But Rice engineer Boris Yakobson believes that the "5/7 machine" repair mechanism at work in carbon nanotubes might operate too in other 2-dimensional tilings, such as micelles (arrays of surface molecules deployed on a colloid) or microtubules.

Reference: Ding et al., Physical Review Letters, upcoming article


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "Nanotube Dermatology." ScienceDaily. ScienceDaily, 22 February 2007. <www.sciencedaily.com/releases/2007/02/070220145021.htm>.
American Institute of Physics. (2007, February 22). Nanotube Dermatology. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2007/02/070220145021.htm
American Institute of Physics. "Nanotube Dermatology." ScienceDaily. www.sciencedaily.com/releases/2007/02/070220145021.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins