Featured Research

from universities, journals, and other organizations

Under Pressure, Vanadium Won't Turn Down The Volume

Date:
February 27, 2007
Source:
Carnegie Institution
Summary:
Scientists at Carnegie's Geophysical Laboratory have discovered a new type of phase transition -- a change from one form to another -- in vanadium, a metal that is commonly added to steel to make it harder and more durable. Under extremely high pressures, pure vanadium crystals change their shape but do not take up less space as a result, unlike most other elements that undergo phase transitions.

Scientists at Carnegie's Geophysical Laboratory have discovered a new type of phase transition--a change from one form to another--in vanadium, a metal that is commonly added to steel to make it harder and more durable. Under extremely high pressures, pure vanadium crystals change their shape but do not take up less space as a result, unlike most other elements that undergo phase transitions. The work appears in the February 23 issue of Physical Review Letters.

Led by High Pressure Collaborative Access Team (HPCAT) research scientist Yang Ding, the team* used a diamond anvil cell to subject vanadium crystals to pressures more than 600 thousand times higher than the atmospheric pressure at sea level (which is about one bar). Using the high-resolution HPCAT x-ray facility, the scientists were able to detect that the basic atomic packing units of vanadium crystals had changed from a cube to a rhombohedron, which resembles a cube whose sides have been squashed from squares into diamond shapes.

"Trying to understand why high-pressure vanadium uniquely has the record-high superconducting temperature of all known elements inspired us to study high-pressure structure of vanadium," Ding said. "We had no idea that we would discover a completely new type of phase transition."

The most familiar phase transitions are those between gas, liquid, and solid forms. In general, increasing pressure and decreasing temperature will cause a substance to take up less space and eventually form a solid. But as a result of their atoms packing in closer together at extremely high pressures, some solids undergo further changes in their physical properties and can even change shape, which usually results in a change in volume. But in this respect, vanadium is unique.

Though it is expensive to mine and refine, vanadium is extremely important in the industrial world, where its main use is as a steel additive. Steel that contains vanadium is exceptionally strong and resistant to metal fatigue, making it ideal for kitchen knives that stay sharp almost indefinitely, and jet turbine blades that can withstand high speed and abrasion.

Pure vanadium crystals in cubic form were thought to be able to resist pressures over several million bars. Recent theoretical calculations, however, suggested that pressure could cause unusual electronic interactions in vanadium that would destroy the cubic crystals. Instead, vanadium avoids this collapse by changing to a rhombohedron.

"Although this type of transition was first observed in vanadium, it suggests that we should reexamine many other elements we thought were very stable," Ding explained. "Moreover, the transition provides a new explanation for the continuous rising of superconducting temperature in high-pressure vanadium, and could lead us to the next breakthrough in superconducting materials."

*In addition to Ding, the team includes Ho-kwang Mao (GL and HPCAT), Jinfu Shu (GL), Paul Chow (HPCAT), and Rajeev Ahuja and Wei Luo (Uppsala University, Uppsala, Sweden).

This work was funded by the U.S. Department of Energy, the National Science Foundation, the U.S. Department of Defense, and the W.M. Keck Foundation.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Institution. "Under Pressure, Vanadium Won't Turn Down The Volume." ScienceDaily. ScienceDaily, 27 February 2007. <www.sciencedaily.com/releases/2007/02/070220182904.htm>.
Carnegie Institution. (2007, February 27). Under Pressure, Vanadium Won't Turn Down The Volume. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2007/02/070220182904.htm
Carnegie Institution. "Under Pressure, Vanadium Won't Turn Down The Volume." ScienceDaily. www.sciencedaily.com/releases/2007/02/070220182904.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins