Featured Research

from universities, journals, and other organizations

Novel Test Identifies Leukemia Patients Likely To Respond To New Therapy

Date:
February 27, 2007
Source:
Albert Einstein College of Medicine
Summary:
Researchers at the Albert Einstein College of Medicine of Yeshiva University have discovered a genetic signature identifying cases of lymphoma that are uniquely susceptible to a newly developed molecular targeted therapy. As a result, physicians organizing clinical trials of the new therapy will be able to enroll patients who'll be most likely to benefit from it.

Researchers at the Albert Einstein College of Medicine of Yeshiva University have discovered a genetic signature identifying cases of lymphoma that are uniquely susceptible to a newly developed molecular targeted therapy. As a result, physicians organizing clinical trials of the new therapy will be able to enroll patients who’ll be most likely to benefit from it.

Related Articles


The research was led by Dr. Ari Melnick, assistant professor of developmental & molecular biology and medicine at Einstein, who also developed the new lymphoma therapy. The study appears in the February 20 issue of the Proceedings of the National Academy of Sciences.

Each year more than 60,000 Americans are diagnosed with B cell lymphomas—tumors of cells of the immune system that include Hodgkin’s and non-Hodgkin’s lymphomas. B cells are the immune-system cells that make antibodies. Genetic aberrations can cause B cells to multiply uncontrollably, causing B cell lymphomas.

Dr. Melnick’s study focused on a gene called BCL6. The protein it codes for is a transcriptional repressor, which means that it can shut off the functioning of genes in B cells and other cells of the immune system and prevent them from being expressed. The BCL6 protein is normally produced only during a specific stage of B cell development and is never made again. But deregulation of BCL6 can cause the protein to be produced when it shouldn’t be. The unwelcome presence of the BCL6 protein blocks the expression of important genes that normally protect cells from becoming cancerous. As a result, malignant B-cell lymphomas occur.

Mutations or chromosomal rearrangements that deregulate BCL6 are responsible for many cases of diffuse large B cell lymphoma—an aggressive cancer that accounts for up to 30 percent of newly diagnosed non-Hodgkin’s lymphoma cases. In a 2004 Nature Medicine article, Dr. Melnick and colleagues described a peptide, which they dubbed BPI, that showed promise in treating B-cell lymphomas by specifically blocking the cancer-causing effects of the BCL6 protein. But until now, there has been no way to distinguish between diffuse large B cell lymphomas that are caused by BCL6 deregulation and those cases in which BCL6 is expressed but doesn’t actually drive the cancer.

Dr. Melnick reasoned that those diffuse large B cell lymphomas that are caused by BCL6 deregulation should have a characteristic “signature” in which the genes targeted by the BCL6 protein are either expressed (turned on) or not expressed. The researchers used state-of-the-art genomics technology to analyze a panel of diffuse large B cell lymphoma cell lines. They found a set of 485 BCL6-controlled genes and confirmed that all lymphomas with the BCL6 signature are killed by BPI while lymphomas without the signature are resistant to the therapy.

“Suitable lymphoma patients—those whose tumor cells exhibit this BCL6 signature --will now have access to a potent and specific therapy that is unlikely to cause the side effects associated with chemotherapy drugs,” says Dr. Melnick. “At the same time, lymphoma patients who don’t fit this genetic profile will be spared a drug treatment that would be ineffective for them.”

Other Einstein scientists involved in the study were Jose M. Polo, Leandro Cerchietti, Kenny Ye and John M. Greally. The researchers also included Przemyslaw Juszczynski and Margaret Shipp of the Dana-Farber Cancer Institute and Stefano Monti of the Broad Institute.


Story Source:

The above story is based on materials provided by Albert Einstein College of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Albert Einstein College of Medicine. "Novel Test Identifies Leukemia Patients Likely To Respond To New Therapy." ScienceDaily. ScienceDaily, 27 February 2007. <www.sciencedaily.com/releases/2007/02/070220182914.htm>.
Albert Einstein College of Medicine. (2007, February 27). Novel Test Identifies Leukemia Patients Likely To Respond To New Therapy. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2007/02/070220182914.htm
Albert Einstein College of Medicine. "Novel Test Identifies Leukemia Patients Likely To Respond To New Therapy." ScienceDaily. www.sciencedaily.com/releases/2007/02/070220182914.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins