Featured Research

from universities, journals, and other organizations

'Buckyballs' Penetrate Deeper, Faster When Skin Is Flexed, Study Shows

Date:
February 25, 2007
Source:
North Carolina State University
Summary:
Researchers at North Carolina State University have discovered that repetitive flexing movements increase the speed and depth at which tiny particles are absorbed through the skin, a finding that could have major implications in medical, consumer and industrial fields.

Researchers at North Carolina State University have discovered that repetitive flexing movements increase the speed and depth at which tiny particles are absorbed through the skin, a finding that could have major implications in medical, consumer and industrial fields.

Related Articles


Dr. Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State’s College of Veterinary Medicine, and graduate student Jillian Rouse, working with Dr. Andrew R. Barron, professor of chemistry and materials science at Rice University, made the discovery by exposing the tiny particles – the soccer-ball shaped materials known as fullerenes or buckyballs which are much smaller than the head of a pin – to pig skin.

The research findings will be published in the Jan. 10 edition of Nano Letters, a journal published by the American Chemical Society. The study was funded by the Environmental Protection Agency, the National Academies Keck Futures Initiative and the Robert A. Welch Foundation.

“Our results confirm that repetitive motion can speed the passage of nanoparticles through the skin,” Monteiro-Riviere says. “As more nanoparticles find their way into the workplace and consumer goods, and as scientists look for innovative ways to use nanoparticles to deliver drugs into the body, it is critical that the nanoscience community identify these types of external exposure factors.”

Researchers conducted the in vitro experiment by adding a fullerene-derived amino acid to portions of pig skin, which has physiological and structural similarities to human skin. The skin was placed on a machine that repeatedly flexed the samples for either 60 or 90 minutes, while control samples were not flexed. Scientists measured the intake of the nanoparticles eight hours after exposure and again at 24 hours after exposure.

The non-flexed and flexed samples all showed some degree of fullerene penetration, but the amount and depth of nanoparticle penetration increased the longer the skin was flexed, the paper reports. Penetration was also deeper in each experimental group after 24 hours than after eight hours, but the deepest penetration was observed in the skin flexed for 90 minutes.

The nanomaterial used in the study were Bucky amino acids (Baa), which are spherical, soccer-ball shaped molecules comprised of 60 carbon atoms and an amino acid chain. The average size of the Bucky amino acids used in the study were .7 nanometers. One nanometer is one-billionth of a meter in size, which is much smaller than the head of a pin. A pin head is 1 million nanometers wide. Each Baa was also tagged with a fluorescent marker so it could be traced through the skin.

The study also suggests that fullerenes penetrate the skin between rather than through cells on the outer, or epidermal, skin layer. The fact that some particles penetrated to the dermal layer further suggests that nanomaterials could get absorbed by capillaries and transported elsewhere in the body.

In drug-delivery applications, the ability of nanoparticles to access the body’s circulatory system has important implications. Although there are many potential benefits to the use of nanomaterials in the treatment of diseases, little is currently known about the potential risks involved with the uptake of nanoparticles through the skin and into the body.

“Many physicians believe the potential for using nanomaterials in drugs to target diseases is the greatest thing,” Monteiro-Riviere says. “Yet the implication is that no one knows what happens when nanoparticles are filtered through the body. There is still a lot of research that must be done.”


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "'Buckyballs' Penetrate Deeper, Faster When Skin Is Flexed, Study Shows." ScienceDaily. ScienceDaily, 25 February 2007. <www.sciencedaily.com/releases/2007/02/070224093120.htm>.
North Carolina State University. (2007, February 25). 'Buckyballs' Penetrate Deeper, Faster When Skin Is Flexed, Study Shows. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2007/02/070224093120.htm
North Carolina State University. "'Buckyballs' Penetrate Deeper, Faster When Skin Is Flexed, Study Shows." ScienceDaily. www.sciencedaily.com/releases/2007/02/070224093120.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins