Featured Research

from universities, journals, and other organizations

NIST 'Micro-rack' Measures Cell Mechanical Properties

Date:
March 5, 2007
Source:
National Institute of Standards and Technology
Summary:
Researchers at NIST have developed a microelectromechanical system (MEMS) cell-stretcher that can measure the mechanical properties of a living cell, such as its ability to stick to a surface. The new device is expected to enable novel studies of cell mechanics, which influence basic cell functions such as growth and division, and diseases such as sickle cell anemia and asthma.

Electron micrograph of the NIST "cell puller," which measures the mechanical properties of a living cell. After the cell spreads and adheres to the center of the 200-micrometer-wide circular platform, half of the platform is pulled slowly away, while a sensor connected to the other half measures the force on the cell. (Credit: D. Serrell/NIST)
Credit: Serrell/NIST

Researchers at the National Institute of Standards and Technology (NIST) have developed a microelectromechanical system (MEMS) cell-stretcher that can measure the mechanical properties of a living cell, such as its ability to stick to a surface. The new device is expected to enable novel studies of cell mechanics, which influence basic cell functions such as growth and division, and diseases such as sickle cell anemia and asthma.

Related Articles


The prototype device, described in a new paper,* is believed to be the only technique for studying bulk mechanical properties of a single, whole cell while it is spreading out and sticking to a substrate as it would in the body, says the designer, NIST bioengineer David Serrell. Other biomechanical test methods focus on individual cell components or entire tissues.

The heart of the NIST device is a circular cell platform 200 micrometers wide, a tiny fleck just barely visible to the naked eye. The two halves of the circle can be pulled as far as 100 micrometers apart under computer control, while the force needed to separate them is measured by sensors. In a demonstration using a connective tissue cell, the cell is placed on the center of the platform, allowed to spread and adhere for several hours, and then pulled slowly apart until it detaches. In NIST experiments, the cells let go of the substrate at a force of about 1500 nanonewtons. (One nanonewton is the approximate amount of force required to break a single chemical bond between two atoms.)

The devices are made on silicon wafers using a NIST-developed process based on standard chip-making techniques. The geometry of any component can be altered to suit a variety of cell types and experiments. The apparatus could be used for a variety of studies, such as effects of cyclic strain on cells, the elasticity of their response to force, or the effectiveness of different proteins used to encourage attachment of the cells, Serrell says. The newest version of the device, fabricated but not yet tested, is made of silicon nitride, a transparent material that will allow simultaneous real-time imaging of the interior of the cells and perhaps provide new insights into the relationships of force and cell mechanical properties and structure.

Co-authors from the University of Colorado at Boulder contributed to development and testing of the device.

* D.B. Serrell, T. Oreskovic, A.J. Slifka, R.L. Mahajan and D.S. Finch. A uniaxial bioMEMS device for quantitative force-displacement measurements. Biomedical Microdevices. Available online.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "NIST 'Micro-rack' Measures Cell Mechanical Properties." ScienceDaily. ScienceDaily, 5 March 2007. <www.sciencedaily.com/releases/2007/03/070302110949.htm>.
National Institute of Standards and Technology. (2007, March 5). NIST 'Micro-rack' Measures Cell Mechanical Properties. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2007/03/070302110949.htm
National Institute of Standards and Technology. "NIST 'Micro-rack' Measures Cell Mechanical Properties." ScienceDaily. www.sciencedaily.com/releases/2007/03/070302110949.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins