Featured Research

from universities, journals, and other organizations

Researchers Discover Gene Essencial To Cerebellum Formation

Date:
March 16, 2007
Source:
Institute for Research in Biomedicine (IRB)
Summary:
Scientists have identified a molecular switch that causes the differentiation of neurons in the cerebellum, a part of the brain that helps to regulate motor functions. This research provides new information on the origin of different cells in the cerebellum, an important component of the central nervous system found in all vertebrates, including humans, and the part of the brain that controls movement.

The progenitors of the ventricular zone of the cerebellum without Ptf1a produce granular cells.
Credit: Image courtesy of Institute for Research in Biomedicine (IRB)

Scientists have identified a molecular switch that causes the differentiation of neurons in the cerebellum, a part of the brain that helps to regulate motor functions.

Related Articles


A study published this week in the scientific journal PNAS provides new information on the origin of different cells in the cerebellum, an important component of the central nervous system found in all vertebrates, including humans, and the part of the brain that controls movement. The study was completed by researchers from the Institute for Research in Biomedicine (IRB Barcelona), the Department of Cell Biology of the University of Barcelona (UB), the IMIM-Hospital del Mar, Pompeu Fabra University (UPF) and Vanderbilt University (Nashville, Tennessee, USA). The main authors of the study are Dr. Marta Pascual (IRB Barcelona and UB) and Ibane Abasolo (IMIM-Hospital del Mar-UPF).

Co-author of the study, Francisco X. Real, coordinator of the Research Unit on Cell and Molecular Biology at IMIM-Hospital del Mar and Professor at the UPF, explains that "this discovery sheds new light on the mechanisms of brain formation and has potential future applications for regenerative medicine. It provides crucial insight into the manipulation of truncal nerve cells (or stem cells) and their selective differentiation into 'gabergic' neurons, or cells that contain the neurotransmitter gamma-aminobutyric acid (GABA) and that act as inhibitors.

Eduardo Soriano, Principal Investigator of the Developmental Neurobiology and Regeneration laboratory at IRB Barcelona, and professor at the UB, maintains that the study explains two important principles: first, "that the protein Ptf1a/p48 is needed for the production and differentiation of Purkinje neurons, the most important cells in the cerebellum"; and second, "that in the absence of this protein, the progenitor cells that should produce Purkinje neurons do not differentiate correctly and instead produce a different type of neuron, granular cells, indicating that Ptf1a/p48 acts as a molecular switch."

The researchers hypothesized that a transcription factor, whose function is well known in the pancreas and which appears to play a role in the nervous system, is also involved in the development of the cerebellum. In order to test their idea, and characterize the new mechanism of cell differentation, the authors used mice with a disactivated gene that codes for the Ptf1a/48 protein, and compared them with mice that express the gene normally. Their conclusions provide new insight into origin of nerve cells that form the cerebellum in higher organisms.

In a second research project, led by Francisco Real and Eduardo Soriano and funded by the Fundaciσ La Caixa, the scientists aim to explore the potential of this gene to produce Purkinje neurons in a laboratory setting. The researchers will investigate whether the expression of Ptf1a/p48 can induce the production of Purkinje cells from stem cells and neurospheres, progenitor cells of adult neurons. This study is an important step toward understanding rare diseases, such as cerebellar ataxias, which is characterized by the degeneration of Purkinje cells. Producing this type of cell in the lab may lead to future neuronal replacement therapy.


Story Source:

The above story is based on materials provided by Institute for Research in Biomedicine (IRB). Note: Materials may be edited for content and length.


Cite This Page:

Institute for Research in Biomedicine (IRB). "Researchers Discover Gene Essencial To Cerebellum Formation." ScienceDaily. ScienceDaily, 16 March 2007. <www.sciencedaily.com/releases/2007/03/070307075628.htm>.
Institute for Research in Biomedicine (IRB). (2007, March 16). Researchers Discover Gene Essencial To Cerebellum Formation. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2007/03/070307075628.htm
Institute for Research in Biomedicine (IRB). "Researchers Discover Gene Essencial To Cerebellum Formation." ScienceDaily. www.sciencedaily.com/releases/2007/03/070307075628.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) — The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) — Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) — Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins