Featured Research

from universities, journals, and other organizations

Why Women Suffer More Knee Injuries

Date:
March 9, 2007
Source:
University of Michigan
Summary:
Female athletes are up to eight times more likely to suffer knee injuries during their careers than males, and now researchers may be closer to understanding why.

Female athletes are up to eight times more likely to suffer knee injuries during their careers than males, and now researchers may be closer to understanding why.

Related Articles


A recent study of 10 female and 10 male NCAA athletes completed within the Department of Biomedical Engineering at the Cleveland Clinic found that female athletes tend to land from a jump with a more flexed ankle, the foot rolling outward with an elevated arch, and more knee abduction and knee internal rotation compared to male athletes.

When fatigued, differences between women and men in these movements and loads were even larger, possibly explaining why females may be at greater risk of non-contact anterior cruciate ligament (ACL) injury during landing

The study's lead researcher, Scott McLean, was previously at Cleveland Clinic and is now an assistant professor with the Division of Kinesiology at the University of Michigan. The study will be published in the March issue of Medicine and Science in Sports and Exercise.

According to the NCAA, female athletes are at least twice as likely to suffer an ACL injury as male athletes and in some cases up to eight times more likely. Research shows that one in 10 female athletes will experience an ACL injury at some point in their career.

"Before we can even consider trying to successfully prevent ACL injuries in both men and women, we need to clearly identify their underlying causes or mechanisms," McLean said. "This study presents an important step in achieving these ultimate research goals. It seems that when fatigued, the potential for an athlete to execute poor decisions, reactions and thus movement responses is greatly increased. Our next step is to determine how we can effectively combat these effects."

"Fatigue affects individuals differently. As we begin to pinpoint how fatigue relates to joint motion during sports movements, we hope to gain a better understanding of how ACL injuries occur and how to prevent them." said Dr. Susan Joy, director of Woman's Sports Health at Cleveland Clinic and study co-author.

During the study, athletes were observed drop-jumping in the Cleveland Clinic Lerner Research Center's Biomechanics lab. The athletes had their movement recorded using three dimensional high-speed motion analysis techniques to examine lower-limb-joint kinematics and kinetics during 10 drop jumps, both before and after fatigue.

Gary Calabrese, director, Cleveland Clinic Sports Health Rehabilitation and the study's co-author said the findings open the door for further research and clinical application.

"Understanding when and why athletes suffer debilitating knee injuries helps us develop more successful and personalized treatment and prevention programs for at-risk individuals," Calabrese said.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan. "Why Women Suffer More Knee Injuries." ScienceDaily. ScienceDaily, 9 March 2007. <www.sciencedaily.com/releases/2007/03/070308084542.htm>.
University of Michigan. (2007, March 9). Why Women Suffer More Knee Injuries. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2007/03/070308084542.htm
University of Michigan. "Why Women Suffer More Knee Injuries." ScienceDaily. www.sciencedaily.com/releases/2007/03/070308084542.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins