Featured Research

from universities, journals, and other organizations

New Form Of Matter-antimatter Transformation Observed For First Time

Date:
March 14, 2007
Source:
Stanford University
Summary:
For the first time, scientists of the BaBar experiment at the Department of Energy's Stanford Linear Accelerator Center (SLAC) have observed the transition of one type of particle, the neutral D-meson, into its antimatter particle. Mesons, of which there are about 140 types, are made up of fundamental particles called quarks, which can be produced when particles collide at high energy. The new observation will be used as a test of the Standard Model, the current theory that best describes all the universe's luminous matter and its associated forces.

SLAC's BaBar detector.
Credit: Image courtesy of Stanford University

For the first time, scientists of the BaBar experiment at the Department of Energy's Stanford Linear Accelerator Center (SLAC) have observed the transition of one type of particle, the neutral D-meson, into its antimatter particle. Mesons, of which there are about 140 types, are made up of fundamental particles called quarks, which can be produced when particles collide at high energy. The new observation will be used as a test of the Standard Model, the current theory that best describes all the universe's luminous matter and its associated forces.

Related Articles


"Achieving the large number of collisions needed to observe this D-meson transition is a testament to the tremendous capabilities of the laboratory's accelerator team," said SLAC Director Jonathan Dorfan. "The discovery of this long-sought-after process is yet another step along the way to a better understanding of the Standard Model and the physics beyond."

The PEP-II accelerator complex at SLAC, also known as the B Factory, allows the BaBar collaboration to study not only B-mesons but also several other types of particles including the D-meson. A flurry of particles in a variety of combinations is produced when electrons and positrons smash together at high energy in the PEP-II collider facility.

One of the most elusive results of this flurry is the transformation of one particle into its anti-particle in a process physicists call "mixing." Neutral K-mesons, observed more than 50 years ago, were the first elementary particles to demonstrate this phenomenon. About 20 years ago, scientists observed mixing with the B-meson. Now, for the first time, the BaBar experimenters have seen the D-meson transform into its anti-particle, and vice versa.

"This is a very exciting moment for us, having found the missing puzzle piece for particle-antiparticle mixing," said BaBar spokesman Hassan Jawahery, a physics professor at the University of Maryland.

D-meson mixing is remarkably rare. Of the BaBar experiment's several billion recorded collisions, this study focuses on about a million events containing a D-meson decay that are candidates for this effect. The experimenters found about 500 events in which a D-meson had changed into an anti-D-meson before decaying.

"SLAC's remarkable combination of a high-intensity accelerator and a precision detector has had a tremendous impact on our ability to probe very rare phenomena that are sensitive to the effects of new physics," said SLAC Deputy Director Persis Drell, who also leads the Particle and Particle Astrophysics Division.

By observing the rare process of D-meson mixing, BaBar collaborators can test the intricacies of the Standard Model. To switch from matter to antimatter, the D-meson must interact with "virtual particles," which through quantum fluctuations pop into existence for a brief moment before disappearing again. Their momentary existence is enough to spark the D-meson's transformation into an anti-D-meson. Although the BaBar detector cannot directly see these virtual particles, researchers can identify their effect by measuring the frequency of the D-meson to anti-D-meson transformation. Knowing that quantity will help determine whether the Standard Model is sufficient or whether it must be expanded to incorporate new physics processes.

"It's too soon to know if the Standard Model is capable of fully accounting for this effect or if new physics is required to explain the observation," said Jawahery. "But in the coming weeks and months we are likely to see an abundance of new theoretical work to interpret what we've observed."

Some 600 scientists and engineers from 77 institutions in Canada, France, Germany, Italy, the Netherlands, Norway, Russia, Spain, the United Kingdom and the United States work on BaBar. SLAC is funded by the Department of Energy's Office of Science.


Story Source:

The above story is based on materials provided by Stanford University. The original article was written by Kelen Tuttle. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University. "New Form Of Matter-antimatter Transformation Observed For First Time." ScienceDaily. ScienceDaily, 14 March 2007. <www.sciencedaily.com/releases/2007/03/070314111136.htm>.
Stanford University. (2007, March 14). New Form Of Matter-antimatter Transformation Observed For First Time. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2007/03/070314111136.htm
Stanford University. "New Form Of Matter-antimatter Transformation Observed For First Time." ScienceDaily. www.sciencedaily.com/releases/2007/03/070314111136.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Driverless Budii Gives the Wheel Feel

Driverless Budii Gives the Wheel Feel

Reuters - Business Video Online (Mar. 6, 2015) The Rinspeed Budii Concept car is creating a driverless stir at this year&apos;s Geneva car show. It&apos;s an all-electric autonomous vehicle with a difference. Ciara Lee reports. Video provided by Reuters
Powered by NewsLook.com
Star Wars Inspires Mobile Holograms

Star Wars Inspires Mobile Holograms

Reuters - Business Video Online (Mar. 6, 2015) 3D holograms could soon be coming to your mobile phone. Inspired by the famous Princess Leia hologram from Star Wars, a U.S. company is showcasing a prototype display at the Mobile World Congress at Barcelona and says it could be used for real-time video calls. Ivor Bennett reports Video provided by Reuters
Powered by NewsLook.com
Game Makers Lured Into Virtual Worlds

Game Makers Lured Into Virtual Worlds

AFP (Mar. 6, 2015) Some 25,000 people have descended upon San Francisco to show off the latest technologies and video games at the Game Developers Conference. Developers here discuss the future of the industry. Duration: 02:20. Video provided by AFP
Powered by NewsLook.com
Gas Production Cut on Earthquake Fears

Gas Production Cut on Earthquake Fears

Reuters - Business Video Online (Mar. 5, 2015) The Dutch government has cut production at Europe&apos;s largest gas field in Groningen amid concerns over earthquakes which are damaging local churches. As Amy Pollock reports the decision - largely politically-motivated - could have big economic conseqeunces. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins