Featured Research

from universities, journals, and other organizations

Healthy Coastal Wetlands Would Adapt To Rising Oceans

Date:
April 2, 2007
Source:
Duke University
Summary:
Tidal marshes, which nurture marine life and reduce storm damage along many coastlines, should be able to adjust to rising sea levels and avoid being inundated and lost, if their vegetation isn't damaged and their supplies of upstream sediment aren't reduced, a new Duke University study suggests.

Model shows an undisturbed marsh may change little when the sea level rise increases from 1 millimeter a year (top left) to 10 (top right). But disturbing half the vegetation (bottom left) or just 5 percent of the plants while reducing sediment supplies (bottom right) creates substantial changes with a 10 mm/year sea level increase.
Credit: Image courtesy of Duke University

Tidal marshes, which nurture marine life and reduce storm damage along many coastlines, should be able to adjust to rising sea levels and avoid being inundated and lost, if their vegetation isn't damaged and their supplies of upstream sediment aren't reduced, a new Duke University study suggests.

Related Articles


Such marshes "offer great value as buffers of coastal storms in cities such as New Orleans, which is separated from the Gulf of Mexico by marshlands," Matthew Kirwan and A. Brad Murray said in a report published online on Monday, March 26, in the journal "Proceedings of the National Academy of Sciences."

The researchers built a 3-D computer model that agrees with other recent work in suggesting that marshlands have some potential for adapting to environmental change. However, the Duke modeling also suggests that substantially disturbing the wetlands' plants or starving them of sediment could disrupt that equilibrium.

These coastal systems of water-tolerant plants and tidal channels also "provide highly productive habitat and serve as nursery grounds for a large number of commercially important fin and shellfish," according to the researchers. Murray is an associate professor of geomorphology and coastal processes at Duke's Nicholas School of the Environment and Earth Sciences. Kirwan, the report's first author, is a doctoral student working with Murray.

Despite those benefits, a variety of environmental changes often linked to humans -- including sea-level rise, sinking land and alterations to sand and silt supplies that anchor the wetland plants -- are "affecting coastal marshes worldwide," the scientists said.

The team's model, which was based partly on field studies done in South Carolina, and compared with observations in Louisiana, Massachusetts and British Columbia marshlands, uses computerized mathematical equations to help researchers evaluate the evolution of marsh shapes and complex ecosystems.

Other research teams have devised similar computer exercises, but Murray said Duke's version emphasizes how biology influences and interacts with physical erosion processes.

The model describes how vegetation and sediments can meld into living "platforms" that adjust to changing water levels. It also factors in how tidal creeks and channels can both supply silt and sand to the evolving matrix or help undo that process through erosion.

"With a steady, moderate rise in sea level, the model builds a marsh platform and channel network (that rises) with the rate of sea-level rise, meaning water depths and biological productivity remain temporarily constant," said the new report.

"If the vegetation is intact, it holds the system in place and enhances the trapping of sediments and tends to minimize the erosion," Murray said. "Up to some high level of sea-level rise, the system is going to keep itself in place because of that vegetation."

But the model also shows that removing some vegetation or reducing sediment supplies will set the stage for increasing water depths, a change exacerbated as the rates of rising sea levels increase.

Those changes might set the stage for "a scary metastable state," Murray said. Under that state, "conditions would tend to revert to an open-water subtidal basin that becomes too deep for the plants to come back," he said.

"We think that could be why marshes in the Chesapeake Bay region as well as in Louisiana are tending to deteriorate," he said. "That's because those are both places with relatively high sea-level rise rates, and because of land-use changes that decrease rates of sediment delivery downstream."

Such land-use changes could include the damming of rivers and the reforestation of formerly open land.

In fact, the study suggests that heavy sediment runoff during the extensive deforestation of America's colonial period may have created the conditions that built up today's extensive -- but now possibly "metastable" -- marshlands along the East Coast.

The research was funded by the National Science Foundation and the Andrew W. Mellon Foundation.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Healthy Coastal Wetlands Would Adapt To Rising Oceans." ScienceDaily. ScienceDaily, 2 April 2007. <www.sciencedaily.com/releases/2007/03/070328155424.htm>.
Duke University. (2007, April 2). Healthy Coastal Wetlands Would Adapt To Rising Oceans. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2007/03/070328155424.htm
Duke University. "Healthy Coastal Wetlands Would Adapt To Rising Oceans." ScienceDaily. www.sciencedaily.com/releases/2007/03/070328155424.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins