Featured Research

from universities, journals, and other organizations

Water Identified In Extrasolar Planet Atmosphere

Date:
April 10, 2007
Source:
Lowell Observatory
Summary:
For the first time, water has been identified in the atmosphere of an extrasolar planet. Through a combination of previously published Hubble Space Telescope measurements and new theoretical models, Lowell Observatory astronomer Travis Barman has found strong evidence for water absorption in the atmosphere of transiting planet HD209458b.

This artist's impression shows a dramatic close-up of the scorched extrasolar planet HD 209458b in its orbit 'only' 7 million kilometres from its yellow Sun-like star. The planet is a type of extrasolar planet known as a 'hot Jupiter'.
Credit: European Space Agency, Alfred Vidal-Madjar (Institut d'Astrophysique de Paris, CNRS, France) and NASA

For the first time, water has been identified in the atmosphere of an extrasolar planet. Through a combination of previously published Hubble Space Telescope measurements and new theoretical models, Lowell Observatory astronomer Travis Barman has found strong evidence for water absorption in the atmosphere of transiting planet HD209458b. This result was recently accepted for publication in the Astrophysical Journal (http://lanl.arxiv.org/abs/0704.1114).

Related Articles


"We now know that water vapor exists in the atmosphere of one extrasolar planet and there is good reason to believe that other extrasolar planets contain water vapor," said Barman.

Water vapor (or steam) has been expected to be present in the atmospheres of nearly all of the known extrasolar planets, even those that orbit closer to their parent star than Mercury is to our Sun. For the majority of extrasolar planets, their close proximity to their parent star has made detecting water and other compounds difficult.

The identification reported here takes advantage of the fact that HD209458b, as seen from Earth, passes directly in front of its star every three and half days. As a planet passes in front of a star, its atmosphere blocks a different amount of the starlight at different wavelengths. In particular, absorption by water in the atmosphere of a giant planet makes the planet appear larger across a specific part of the infrared spectrum compared to wavelengths in the visible spectrum.

An analysis of visible and infrared Hubble data carried out last year by Harvard student Heather Knutson made possible a direct comparison to new theoretical models developed by Barman at Lowell Observatory. This ultimately led to the identification of water absorption in a planet 150 light years from Earth.

“It is encouraging that theoretical predictions of water in extrasolar planets seem to agree reasonably well with observations,” said Barman.

This research was supported by NASA’s Origins of Solar System program.


Story Source:

The above story is based on materials provided by Lowell Observatory. Note: Materials may be edited for content and length.


Cite This Page:

Lowell Observatory. "Water Identified In Extrasolar Planet Atmosphere." ScienceDaily. ScienceDaily, 10 April 2007. <www.sciencedaily.com/releases/2007/04/070410174108.htm>.
Lowell Observatory. (2007, April 10). Water Identified In Extrasolar Planet Atmosphere. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2007/04/070410174108.htm
Lowell Observatory. "Water Identified In Extrasolar Planet Atmosphere." ScienceDaily. www.sciencedaily.com/releases/2007/04/070410174108.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Space & Time News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What NASA Wants To Learn From Its 'Year In Space' Tests

What NASA Wants To Learn From Its 'Year In Space' Tests

Newsy (Mar. 28, 2015) Astronaut Scott Kelly and cosmonaut Mikhail Kornienko will spend a year in space running tests on human physiology and psychology. Video provided by Newsy
Powered by NewsLook.com
Crew Starts One-Year Space Mission

Crew Starts One-Year Space Mission

Reuters - News Video Online (Mar. 28, 2015) Russian-U.S. crew arrives safely at the International Space Station for the start of a ground-breaking year-long stay. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
Why So Many People Think NASA's Asteroid Mission Is A Waste

Why So Many People Think NASA's Asteroid Mission Is A Waste

Newsy (Mar. 27, 2015) The Asteroid Retrieval Mission announced this week bears little resemblance to its grand beginnings. Even NASA scientists are asking, "Why bother?" Video provided by Newsy
Powered by NewsLook.com
Space Station Crew Docks Safely

Space Station Crew Docks Safely

Reuters - News Video Online (Mar. 27, 2015) NASA TV footage shows the successful docking of a Russian Soyuz craft to the International Space Station for a year-long mission. Rough cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins