Featured Research

from universities, journals, and other organizations

Where Has All The Antimatter Gone?

Date:
April 12, 2007
Source:
Science and Technology Facilities Council
Summary:
Scientists have completed work on the inner heart of an experiment which seeks to find out what has happened to all the antimatter created at the start of the Universe. Matter and antimatter were created in equal amounts in the Big Bang but somehow the antimatter disappeared resulting in the Universe, and everything in it, including ourselves, being made of the remaining matter.

Paul Collins, VELO project leader (left), Tatsuya Nakada, LHCb spokesman (right) hold the 42nd VELO module on its arrival at CERN.
Credit: University of Liverpool

Scientists from the Universities of Liverpool and Glasgow have completed work on the inner heart of an experiment which seeks to find out what has happened to all the antimatter created at the start of the Universe. Matter and antimatter were created in equal amounts in the Big Bang but somehow the antimatter disappeared resulting in the Universe, and everything in it, including ourselves, being made of the remaining matter.

Related Articles


The final modules of the VErtex LOcator (VELO), a precision silicon detector, have been delivered to CERN, the European Particle Physics Laboratory in Geneva. Once assembled VELO will be installed into the LHCb detector, one of four experiments, which make up the Large Hadron Collider (LHC) particle accelerator, which is due to be switched on in November this year.

LHCb is designed to investigate the subtle differences between matter and antimatter in particles containing b (beauty) quarks. The VELO is an essential part of the experiment which will provide the unprecedented precision necessary to isolate them. The LHC, located in a 27km underground tunnel which straddles France and Switzerland, will help answer some of the fundamental questions about the origins of our Universe and is set to change the future path of particle physics research.

Within the LHC, two beams of protons will be accelerated to close to the speed of light and then collided in one of the four experiments, which will each measure the outfall of particles.

Professor Themis Bowcock, lead scientist from the University of Liverpool LHCb team said, "The VELO gives us the precision we need not only to identify b quarks in a proton-proton collision, but to do so in real time. This allows us to isolate samples of b quarks for analysis in a way that would be impossible otherwise. It is the key to LHCb's physics aims."

The VELO is unique in its design with the whole device (about a metre long) consisting of 42 silicon "modules", spread along both sides of the proton beam (21 each side). The VELO actually sits inside a vacuum vessel - with a thin sheet of aluminium, know as RF foil, separating it from the primary vacuum inhabited by the proton beams. The two halves of modules are mechanically moved in to within 7mm of the beam during data-taking, and out to a safe distance afterwards.

Dr Tara Shears, LHCb scientist from the University of Liverpool explains, "To achieve optimal precision the silicon detectors need to be as close as possible to the beam. When operational 40 million proton proton interactions will occur per second inside LHCb and it is no mean feat that measurements of these collisions will take place in real time.

Like all the detector experiments at CERN a worldwide team of scientists are involved in the design and construction of LHCb. The experiment involves 663 scientists from 47 institutes and universities in 15 countries. UK collaborators make up around 20% of this. The individual VELO modules, of which there are 42 in total, were designed and assembled at the University of Liverpool in a state of the art clean room.

Transport of the completed VELO modules from the University of Liverpool occurred by less than traditional means. Each module being couriered via an easyJet flight to Geneva! However, with the onset of tighter baggage restrictions some of the modules made the 1,066 km (663 mile) journey in the boot of a car.

Scientists from the University of Glasgow are responsible for the reception and testing of the modules at CERN. Dr Chris Parkes from University of Glasgow said, "Now that all 42 modules are on site we are busy testing before final installation in the detector, 100 metres underground.


Story Source:

The above story is based on materials provided by Science and Technology Facilities Council. Note: Materials may be edited for content and length.


Cite This Page:

Science and Technology Facilities Council. "Where Has All The Antimatter Gone?." ScienceDaily. ScienceDaily, 12 April 2007. <www.sciencedaily.com/releases/2007/04/070411110022.htm>.
Science and Technology Facilities Council. (2007, April 12). Where Has All The Antimatter Gone?. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2007/04/070411110022.htm
Science and Technology Facilities Council. "Where Has All The Antimatter Gone?." ScienceDaily. www.sciencedaily.com/releases/2007/04/070411110022.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins