Featured Research

from universities, journals, and other organizations

Bacteria Control How Infectious They Become

Date:
April 12, 2007
Source:
Ohio State University
Summary:
The results of a new study suggest that bacteria that cause diseases like bubonic plague and serious gastric illness can turn the genes that make them infectious on or off. Knowing how disease-causing bacteria, like Yersinia pestis and E. coli, do this may one day help scientists create drugs that control the expression of these genes, thereby making the bacteria harmless.

The results of a new study suggest that bacteria that cause diseases like bubonic plague and serious gastric illness can turn the genes that make them infectious on or off.

Related Articles


Knowing how disease-causing bacteria, like Yersinia pestis and E. coli, do this may one day help scientists create drugs that control the expression of these genes, thereby making the bacteria harmless, said Vladimir Svetlov, a study co-author and a research associate in microbiology at Ohio State University. The findings appear in the April 13 issue of the journal Molecular Cell.

Gene expression -- the process of turning on, or activating, genes -- is controlled by proteins called transcription factors. Every type of bacteria known to humankind contains the transcription factor NusG, which controls nearly all of a bacterium's gene expression. Without it, a microorganism will die.

"We think that NusG regulates nearly every gene in every form of bacteria," said Irina Artsimovitch, the study's lead author and an associate professor of microbiology at Ohio State . "Say a bacterium has 3,000 genes -- NusG would regulate 2,900 of them."

But somewhere along the evolutionary path, NusG was copied and physically changed. The result was a specialized transcription factor called RfaH. Unlike NusG, RfaH controls only a small portion of gene expression. But it happens to turn on those genes that give bacteria like E. coli and Y. pestis their ability to infect.

The researchers say that this study likely marks the first successful attempt by a laboratory to determine the structure of RfaH.

They used special X-ray techniques to study and describe RfaH proteins that they had extracted from E. coli. They found that while about two-thirds of RfaH's structure closely resembles the structure of NusG, the remaining one-third looked dramatically different. It's this latter third that appears to be the portion of the protein responsible for controlling the genes that make E. coli infectious.

"In contrast to NusG, which is always active, RfaH is usually inactive, because the part of the protein that is needed to activate gene expression is typically masked," Svetlov said.

It's only when RfaH finds the appropriate target sequence on a bacterium's DNA that this small portion of the protein is unmasked and can then turn on a select group of genes. These genes let disease-causing bacteria infect their host while at the same time protecting the bacteria from the host's immune defenses.

"E. coli seems to prevent RfaH from acting unless the microorganism absolutely needs it," Artsimovitch said. That's because bacteria like E. coli are caught in a delicate balancing act. With too little RfaH, bacteria grow too slowly. But too much RfaH, and they will die.

While RfaH's control over gene expression is limited, it seems that its structure lets it control key sequences of the genome during transcription, the process of transferring genetic information inside a cell and one of the first steps of gene expression.

"Making RfaH work only at specific sites is, in a sense, a genius way to prevent it from interfering with NusG," Artsimovitch said. "It seems that the only genes that RfaH can't regulate are those controlled by NusG."

Bacteria can survive without RfaH, but not without NusG. Yet without RfaH, bacteria lose the ability to infect. In previous laboratory experiments, the researchers found that pathogens lacking RfaH grow at much slower rates.

"Cells usually don't die when RfaH use changes," Svetlov said. "Rather, bacteria seem to manipulate the protein, to play around with it. Too much RfaH will kill a cell, while too little would prevent it from infecting any living being.

"We think that RfaH is responsible for more than making a microbe infectious," he continued. "Actually seeing what happens at the molecular level will help us figure out what else this protein regulates."

Svetlov and Artsimovitch conducted the study with Georgy Belogurov, a postdoctoral research associate in microbiology at Ohio State, and with researchers from the University of Alabama at Birmingham, the Howard Hughes Medical Institute and the University of Texas Southwestern Medical Center in Dallas.

Support for this research was provided in part by the National Institutes of Health and the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Bacteria Control How Infectious They Become." ScienceDaily. ScienceDaily, 12 April 2007. <www.sciencedaily.com/releases/2007/04/070412122938.htm>.
Ohio State University. (2007, April 12). Bacteria Control How Infectious They Become. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2007/04/070412122938.htm
Ohio State University. "Bacteria Control How Infectious They Become." ScienceDaily. www.sciencedaily.com/releases/2007/04/070412122938.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins