Featured Research

from universities, journals, and other organizations

Nitric Oxide: Key To Cardiovascular And Pulmonary Function And Drug Effectiveness

Date:
May 7, 2007
Source:
Duke University Medical Center
Summary:
A naturally occurring molecule in the body appears to control whether certain medications, such as beta adrenergic receptor agonists used in acute heart failure or in inhalers for asthma, lose their effectiveness over time.

Jonathan Stamler, M.D.
Credit: Duke University Medical Center

A naturally occurring molecule in the body appears to control whether certain medications, such as beta adrenergic receptor agonists used in acute heart failure or in inhalers for asthma, lose their effectiveness over time. Nitric oxide is a molecule produced by the body that controls many functions, including the contraction or dilation of blood vessels.

New experiments conducted by Duke University Medical Center and Howard Hughes Medical Institute researchers have shown that specialized forms of nitric oxide called SNOs may be the key to a problem that has stumped physicians for years -- why specific drugs for such diseases as heart failure or asthma lose their effectiveness over time.

Almost half of all drugs on the market today, as well as many hormone and neurotransmitters, target a specific family of cell surface receptors known as G-protein coupled receptors. The researchers believe that the presence or absence of nitric oxide or SNOs determines whether these receptors continue to function properly. This action is controlled by the ability of nitric oxide to inhibit a key regulatory system which ordinarily shuts the receptors off after they are stimulated

"This work is significant in that it demonstrates how two of the most pervasive physiological systems -- G-protein coupled receptors and nitric oxide -- come together to influence one another," said Erin Whalen, Ph.D., who spent six years focusing on the link between the two biological systems. Whalen is a postdoctoral fellow in the laboratory of Robert Lefkowitz, M.D., a Howard Hughes Medical Institute investigator at Duke who first cloned these receptors in 1986. The link was cemented through a collaboration with Matt Foster, a post-doctoral fellow in the laboratory of Jonathan Stamler M.D.

G-protein coupled receptors reside on the cell surface where they interact with all manner of stimuli, including circulating factors such as adrenaline, as well such diverse sensory signals as odorants and light. The activation of these receptors leads to the propagation of intracellular signals. Once activated the receptors are quickly turned-off by an enzyme called a G protein-coupled receptor kinase. This process is called desensitization and can limit the effectiveness of many drugs, such as opiates for pain and adrenaline for asthma, and is further associated with numerous diseases including those of the cardiovascular and pulmonary systems. If activated for a long period of time the receptors are carried into the cell and are "turned off."

In animal, cellular and biochemical experiments, the researchers found that a lack of nitric oxide leads to a decrease in beta adrenergic receptor number and function. Also, the researchers found that when SNO compounds were administered to mice they could prevent the receptors from being "turned off" by the drugs.

The researchers said these findings, if confirmed in humans, open up new avenues for the development of non-desensitizing drugs not only for heart failure and asthma but also for other conditions such as pain and high blood pressure.

"We demonstrated that when one of the systems goes awry, so does the other," said Stamler, whose laboratory has made many fundamental discoveries about the role of nitric oxide in human biology, including the discovery of SNOs' ubiquitous role in human health and disease. "When nitric oxide function is impaired by disease, therapeutic agents like beta-agonists in asthma and adrenergic stimulants in heart failure will work less well. The key now is to determine how best to manipulate these ubiquitous receptors, together with nitric oxide for the treatment of human diseases."

"In broad terms, the results of these experiments present a novel role for nitric oxide in regulating the activity of G-protein coupled receptors," Lefkowitz said. "Also, the findings point to the possibility that deficiencies in the activity of nitric oxide, which occurs in common disorders such as high blood pressure, diabetes, atherosclerosis, cystic fibrosis and neurodegenerative conditions, as well as in aging, may interfere with the G-protein coupled receptor signaling."

The researchers reported their latest findings on Friday, May 4, in the journal Cell. Other Duke members of the team were Akio Matsumoto, Kentaro Ozama, Jonathan Violin, Loretta Que, Chris Nelson, Moran Benhar and Howard Rockman. Yehia Daaka of the Medical College of Georgia, and Janelle Keys and Walter Koch, both of Jefferson Medical College, in Philadelphia, were also members of the team.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Nitric Oxide: Key To Cardiovascular And Pulmonary Function And Drug Effectiveness." ScienceDaily. ScienceDaily, 7 May 2007. <www.sciencedaily.com/releases/2007/05/070503125708.htm>.
Duke University Medical Center. (2007, May 7). Nitric Oxide: Key To Cardiovascular And Pulmonary Function And Drug Effectiveness. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2007/05/070503125708.htm
Duke University Medical Center. "Nitric Oxide: Key To Cardiovascular And Pulmonary Function And Drug Effectiveness." ScienceDaily. www.sciencedaily.com/releases/2007/05/070503125708.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins