Featured Research

from universities, journals, and other organizations

Inherited Genes Linked To Toxicity Of Leukemia Therapy

Date:
May 14, 2007
Source:
St. Jude Children's Research Hospital
Summary:
Medical researchers have discovered inherited variations in certain genes that make children with acute lymphoblastic leukemia susceptible to the toxic side effects caused by chemotherapy medications.

Investigators at St. Jude Children's Research Hospital have discovered inherited variations in certain genes that make children with acute lymphoblastic leukemia (ALL) susceptible to the toxic side effects caused by chemotherapy medications. The researchers showed that these variations, called polymorphisms, occur in specific genes known to influence pharmacodynamics (how drugs work in the body and how much drug is needed to have its intended effect).

Related Articles


The findings, made during a study of 240 children, are important because these side effects in ALL can be life-threatening and interrupt delivery of treatment, increasing the risk of relapse. The new insights gained in this study could help individualize ALL chemotherapy according to a patient's inherited tendencies to develop toxic reactions to specific drugs.

"Such individualized therapy would eliminate the time-consuming trial-and-error approach to finding the right dose for a patient," said Mary Relling, Pharm.D., chair of the Pharmaceutical Sciences department at St. Jude. "When the results of our findings are translated into routine clinical care, we should see less toxicity among children being treated for ALL." Relling is senior author of a report of this work that appears in the May 15 issue of "Blood."

The St. Jude team extracted DNA from healthy white blood cells of patients and looked for 16 polymorphisms previously known to be present in genes linked to drug pharmacodynamics. Using a variety of statistical analyses, the investigators identified links between specific polymorphisms and gastrointestinal, infectious, hepatic (liver), and neurologic toxicities during each phase of treatment. The three treatment phases were induction, the initial phase designed to cause remission of the cancer; consolidation, the follow-up after induction; and consolidation, the final phase to ensure comprehensive elimination of cancer cells.

The study showed that some of the 16 genetic polymorphisms are linked to toxic side effects during more than one treatment phase; and some caused more than one type of toxicity. Certain polymorphisms were linked to the pharmacokinetics of specific drugs-- how drugs are absorbed by the body, distributed, chemically modified or broken down and eliminated. Variations in pharmacokinetics can alter the levels of drugs in the body, leading to ineffective or toxic levels in individual patients.

For example, during the induction phase, when a variety of different types of chemotherapy drugs are used, polymorphisms in the two genes that were part of a biochemical pathway that breaks down chemotherapy drugs were linked to gastrointestinal toxicity and infection, respectively. In the consolidation phase, when drugs called antifolates were the main treatment, a folate was linked to gastrointestinal toxicity, as it was during the continuation phase. And in all three phases, one polymorphism was linked to hyperbilirubinemia, or jaundice, partly caused by the drug methotrexate.

"Scientists at St. Jude and elsewhere have dramatically improved survival rates from childhood leukemia, but it's still challenging to find the right dose for each patient," said Rochelle Long, Ph.D., director of the National Institutes of Health Pharmacogenetics Research Network. "By finding specific genetic variations linked to how individual patients respond to therapy, this work will make medicines safer and more effective for everyone."

Other authors of this work include Shinji Kishi, Cheng Cheng, Deborah French, Deqing Pei, Nobuko Hijiya, Ching-Hon Pui and William Evans (St. Jude); Soma Das and Edwin Cook (University of Chicago); Carmelo Rizzari (University of Milan, Italy), Gary Rosner (M.D. Anderson Cancer Center, Houston) and Tony Frudakis (DNAPrint Genomics, Sarasota, Fla.).

This work was supported in part by the National Cancer Institute; the National Institutes of Health/National Institute of General Medical Sciences Pharmacogenetics Research Network and Database; a Center of Excellence grant from the State of Tennessee and ALSAC.


Story Source:

The above story is based on materials provided by St. Jude Children's Research Hospital. Note: Materials may be edited for content and length.


Cite This Page:

St. Jude Children's Research Hospital. "Inherited Genes Linked To Toxicity Of Leukemia Therapy." ScienceDaily. ScienceDaily, 14 May 2007. <www.sciencedaily.com/releases/2007/05/070511145611.htm>.
St. Jude Children's Research Hospital. (2007, May 14). Inherited Genes Linked To Toxicity Of Leukemia Therapy. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2007/05/070511145611.htm
St. Jude Children's Research Hospital. "Inherited Genes Linked To Toxicity Of Leukemia Therapy." ScienceDaily. www.sciencedaily.com/releases/2007/05/070511145611.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins