Featured Research

from universities, journals, and other organizations

Physicists Develop Carbon Nanotube Aerogel Optimizing Strength, Shape And Conductivity

Date:
May 28, 2007
Source:
University of Pennsylvania
Summary:
Researchers have created low-density aerogels made from carbon nanotubes, CNTs, that are capable of supporting 8,000 times their own weight. The new material also combines the strength and ultra-light, heat-insulating properties of aerogels with the electrical conductivity of nanotubes.

Images of aerogels. a) Macroscopic pieces of 7.5 mgmL//--1// CNT aerogels. Pristine CNT aerogel (left) appears black, whereas the aerogel reinforced in a 1 wt% PVA bath (right) is slightly gray. b) Three PVA-reinforced aerogel pillars (total mass = 13.0 mg) supporting 100 g, or ca. 8000 times their weight. c) This scanning electron microscopy (SEM) image of a critical-point-dried aerogel reinforced in a 0.5 wt% PVA solution (CNT content = 10 mgmL//--1//) reveals an open, porous structure. d) This high-magnification transmission electron microscopy (TEM) image of an un-reinforced aerogel reveals small-diameter CNTs arranged in a classic filamentous network.
Credit: Image courtesy of University of Pennsylvania

Researchers at the University of Pennsylvania have created low-density aerogels made from carbon nanotubes, CNTs, that are capable of supporting 8,000 times their own weight. The new material also combines the strength and ultra-light, heat-insulating properties of aerogels with the electrical conductivity of nanotubes.

Aerogels are unique, low-density materials created by replacing the liquid component of a gel with gas and are normally constructed from silicon dioxide or other organic polymers. They are currently used as ultra-light structural materials, radiation detectors and thermal insulators. Aerogels made from CNTs offer advantages to current aeroegels that point towards future applications in chemical or biological sensors.

A collaboration led by Arjun G. Yodh and Jay Kikkawa of the department of Physics and Astronomy at Penn created the aerogels by freeze-drying or critical-point-drying CNT networks suspended in fluid. The process produces a carbon nanotube network whose carbon concentration, electrical conductivity and strength can be manipulated. Critical-point-drying demonstrated reproducible conductivity in the aerogels.

The team also maintained control of the density, microscopic structure and shape of the CNT aerogels, as well as their strength. By adding small amounts of polyvinyl alcohol during processing, very strong aerogels were created. The nanotube dispersion process was optimized to create an even distribution of nanotubes within the aerogel.

The findings were reported in the journal Advanced Materials.

The study was conducted by Yodh, Kikkawa, Mateusz B. Bryning, Daniel E. Milkie and Lawrence A. Hough of Penn's Department of Physics and Astronomy and Mohammad F. Islam of the Department of Chemical Engineering at Carnegie Mellon University.

The research was supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania. "Physicists Develop Carbon Nanotube Aerogel Optimizing Strength, Shape And Conductivity." ScienceDaily. ScienceDaily, 28 May 2007. <www.sciencedaily.com/releases/2007/05/070524154616.htm>.
University of Pennsylvania. (2007, May 28). Physicists Develop Carbon Nanotube Aerogel Optimizing Strength, Shape And Conductivity. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2007/05/070524154616.htm
University of Pennsylvania. "Physicists Develop Carbon Nanotube Aerogel Optimizing Strength, Shape And Conductivity." ScienceDaily. www.sciencedaily.com/releases/2007/05/070524154616.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins