Featured Research

from universities, journals, and other organizations

'Smart' Mice Teach Scientists About Learning Process, Brain Disorders

Date:
May 28, 2007
Source:
UT Southwestern Medical Center
Summary:
Mice genetically engineered to lack a single enzyme in their brains are more adept at learning than their normal cousins, and are quicker to figure out that their environment has changed, scientists have found.

Dr. James Bibb (center), assistant professor of psychiatry, along with Drs. Craig Powell, assistant professor of neurology, and Donald Cooper, assistant professor of psychiatry, was involved in research showing that mice lacking a specific enzyme in their brains are more adept at learning than their normal cousins. The results might ultimately reveal a new mechanism of learning in the brain, which might serve in humans as a target for treating disorders such as post-traumatic stress disorder, Alzheimer's disease or drug addiction.
Credit: UT Southwestern Medical Center

Mice genetically engineered to lack a single enzyme in their brains are more adept at learning than their normal cousins, and are quicker to figure out that their environment has changed, a team led by researchers at UT Southwestern Medical Center has found.

The results, appearing in the online edition of the journal Nature Neuroscience, reveal a new mechanism of learning in the brain, which might serve in humans as a target for treating disorders such as post-traumatic stress disorder, Alzheimer's disease or drug addiction, the researchers said.

"It's pretty rare that you make mice 'smarter,' so there are a lot of cognitive implications," said Dr. James Bibb, assistant professor of psychiatry and the study's senior author.

"Everything is more meaningful to these mice," he said. "The increase in sensitivity to their surroundings seems to have made them smarter."

The engineered mice were more adept at learning to navigate a water maze and remembering that being in a certain box involves a mild shock. Equally important, Dr. Bibb said, when a situtation changed, such as the water maze being rearranged, the engineered mice were much faster to realize that things were different and work out the new route.

Dr. Bibb cautioned that while the mice learn faster, studies on the long-term effects of deleting the enzyme, called Cdk5, from the brain are continuing.

The group is also beginning a search for drugs that might create the same effects without genetic manipulation and monitoring the animals' health and behavior over time.

The findings may have applications in treating post-traumatic stress disorder, where getting a patient to learn that a once-threatening situation no longer poses a danger is a major goal.

In addition, Cdk5 is heavily implicated in Alzheimer's disease and addiction to drugs of abuse, so understanding how the enzyme affects the brain and behavior might aid in the development of new treatments for these and other conditions, Dr. Bibb said.

The key in this study was being able to "knock out" the gene for Cdk5 only in the brain, and only when the mice were adults. This technique, only recently developed and called conditional knockout, allows much more sophisticated experiments than traditional knockout, which entirely eliminates the gene.

"Being able to turn a gene off throughout a brain is a really advanced thing to do," Dr. Bibb said. "It's been shown that it can be done, but we put the system together and actually applied it."

Normally, Cdk5 works with another enzyme to break up a molecule called NR2B, which is found in nerve-cell membranes and stimulates the cell to fire when a nerve-cell-signaling molecule, or neurotransmitter, binds to it. NR2B previously has been implicated in the early stages of learning.

The new research showed that when Cdk5 is removed from the brain, the levels of NR2B significantly increase, and the mice are primed to learn, Dr. Bibb said.

"We made the animals 'smarter,' but in doing so and applying this technology, we also found biochemical targets that hold promise for future treatments of a variety of cognitive disorders," he said.

The researchers also recorded nerve-cell firings in the hippocampus, an area of the brain associated with learning. Hippocampus slices from the knock-out mice responded much more strongly to an electrical stimulation, supporting the finding that the mice were more prepared to learn.

Other UT Southwestern researchers involved in the study were Ammar Hawasli, David Benavides and Chan Nguyen, students in the Medical Scientist Training Program; Dr. Janice Kansy, instructor in psychiatry; Dr. Kanehiro Hayashi, postdoctoral researcher in psychiatry; Dr. Craig Powell, assistant professor of neurology; and Dr. Donald Cooper, assistant professor of psychiatry. Researchers from the Institut de G้n้tique et de Biologie Mol้culaire et Cellulaire in Strausbourg, France, and The Rockefeller University also participated.

The work was supported by the National Institute on Drug Abuse, the National Institutes of Health, NARSAD, the National Institute of Mental Health and the Ella McFadden Charitable Trust Fund at the Southwestern Medical Foundation.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "'Smart' Mice Teach Scientists About Learning Process, Brain Disorders." ScienceDaily. ScienceDaily, 28 May 2007. <www.sciencedaily.com/releases/2007/05/070527200624.htm>.
UT Southwestern Medical Center. (2007, May 28). 'Smart' Mice Teach Scientists About Learning Process, Brain Disorders. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2007/05/070527200624.htm
UT Southwestern Medical Center. "'Smart' Mice Teach Scientists About Learning Process, Brain Disorders." ScienceDaily. www.sciencedaily.com/releases/2007/05/070527200624.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) — Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) — Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) — The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) — Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins