Featured Research

from universities, journals, and other organizations

Common Treatment For Methamphetamine Overdose May Damage Brain Cells

Date:
May 30, 2007
Source:
Society for Neuroscience
Summary:
A common antipsychotic drug used in emergency rooms to treat methamphetamine overdose damages nerve cells in an area of the brain known to regulate movement, a new study shows.

A common antipsychotic drug used in emergency rooms to treat methamphetamine overdose damages nerve cells in an area of the brain known to regulate movement, a new study shows.

The findings, derived from experiments with rats, indicate that only the combination of the medication, haloperidol, and methamphetamine causes the destructive effects, not either one alone. Senior author Bryan Yamamoto, PhD, and his team at Boston University School of Medicine suspect the damage results from the exaggerated stimulation of cells by the amino acid glutamate, which proves toxic to cells producing the neurotransmitter gamma-aminobutyric acid (GABA). Their results are published in the May 30 issue of The Journal of Neuroscience.

"This work in laboratory animals raises immediate concerns that a standard treatment for methamphetamine overdose in humans might worsen drug abuse-related brain injuries," says William Carlezon, PhD, at Harvard's McLean Hospital, who was not affiliated with the study. "A crucial next step is to determine how atypical antipsychotic medications would affect methamphetamine toxicity in the same model."

The rats in the experiment were injected with either methamphetamine or a saline solution over a period of eight hours. When the rats were given haloperidol before and nearly halfway through the eight-hour period, Yamamoto and his colleagues noted more than a fivefold rise in base levels of glutamate in the substantia nigra, a part of the brain known to play a role in movement disorders such as Huntington's disease.

After examining the long-term effects of the combination, they found that glutamate concentrations in the substantia nigra were twice as high in methamphetamine-treated rats as in saline-treated ones two days after injections. Yamamoto and his colleagues were able to link this rise in glutamate to the death of GABA-containing cells in one part of the substantia nigra. This may predispose some people who have been treated for a methamphetamine overdose to seizures and the development of movement disorders, they say, although the study did not measure movement specifically.

In addition to future studies of other antipsychotic medications, says Yamamoto, "we hope to examine if the loss of cells results in abnormal involuntary movements resembling Tourette's syndrome and Huntington's disease."

The work was a supported by grants from the National Institutes of Health and a gift from Hitachi America.


Story Source:

The above story is based on materials provided by Society for Neuroscience. Note: Materials may be edited for content and length.


Cite This Page:

Society for Neuroscience. "Common Treatment For Methamphetamine Overdose May Damage Brain Cells." ScienceDaily. ScienceDaily, 30 May 2007. <www.sciencedaily.com/releases/2007/05/070529174810.htm>.
Society for Neuroscience. (2007, May 30). Common Treatment For Methamphetamine Overdose May Damage Brain Cells. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2007/05/070529174810.htm
Society for Neuroscience. "Common Treatment For Methamphetamine Overdose May Damage Brain Cells." ScienceDaily. www.sciencedaily.com/releases/2007/05/070529174810.htm (accessed October 21, 2014).

Share This



More Mind & Brain News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Movies Might Desensitize Violence For Parents, Not Just Kids

Movies Might Desensitize Violence For Parents, Not Just Kids

Newsy (Oct. 20, 2014) A study suggests that parents become desensitized to violent movies as well as children, which leads them to allow their kids to view violent films. Video provided by Newsy
Powered by NewsLook.com
Court Ruling Means Kids' Online Activity Could Be On Parents

Court Ruling Means Kids' Online Activity Could Be On Parents

Newsy (Oct. 17, 2014) In a ruling attorneys for both sides agreed was a first of its kind, a Georgia appeals court said parents can be held liable for what kids put online. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins