Featured Research

from universities, journals, and other organizations

Scientists Study Sun's Radiation To Track Pollution Sources

Date:
June 19, 2007
Source:
Colorado State University
Summary:
Scientists are studying the reduction of solar ultraviolet radiation by atmospheric particles to learn how the various sources of pollution - biomass burning, auto exhaust and oil refining - affect the atmospheric chemistry and air quality of Mexico City. This particular technique will be used along with data retrieval from satellites around the world to study the influence of pollution on global warming and climate change.

Colorado State University scientists are studying the reduction of solar ultraviolet radiation by atmospheric particles to learn how the various sources of pollution - biomass burning, auto exhaust and oil refining - affect the atmospheric chemistry and air quality of Mexico City. This particular technique will be used along with data retrieval from satellites around the world to study the influence of pollution on global warming and climate change.

This research allows Colorado State scientists to trace the location of where the air people breathe originally came from by studying the optical properties of aerosols along with computer forecast models.

Aerosols are tiny airborne solid particles consisting of acids, water, black carbon or dust. The aerosols change the amount of solar radiation reaching the earth's surface as well as modify the heating and circulation in the atmosphere. Scientists emphasize the importance of distinguishing naturally occurring aerosols from volcanoes, dust storms, sea salt spray and forest fires as opposed to aerosols induced by human activity such as burning fossil fuels.

"Aerosols contribute to human health problems such as emphysema and respiratory problems," said Jim Slusser, Colorado State senior scientist and director of the UVB Monitoring and Research Program. "It is only when strict mitigation, regulatory standards and stiff fines for non-compliance were pushed through Congress that U.S. cities began to reduce harmful sulfur and black carbon aerosols. The data from our research will help decision makers in Mexico choose between various mitigation and adaptation strategies in regards to the dense pollution."

Since 1992, Colorado State scientists have created research stations in 26 states to measure ultraviolet radiation and to determine its effects on agriculture and human health. The U.S. Department of Agriculture funds the $1.85 million UVB Monitoring and Research Program, or UVMRP, in Colorado State's Natural Resource Ecology Laboratory, based in the Warner College of Natural Resources.

Solar measurements from the UV to the near infrared are made every three minutes at 36 climate stations established by Colorado State. This critical information - unavailable from any other source - is used by researchers at USDA, NASA, NOAA and EPA.

In early March 2006, scientists from all over the world and more than 80 academic institutions and federal agencies made measurements to quantify the various chemical, radiative and dynamical factors associated with air quality in Mexico City. The project is funded by a National Science Foundation grant.

As a nation, Mexico has very little regulation on emissions from oil refineries, transportation, biomass burning and power generation. As a result, Mexico City often is engulfed in ozone and aerosol pollution. At times, even surrounding rural areas are extremely hazy due to biomass burns. Ozone results when solar UV rays are absorbed by hydrocarbons and nitrogen oxides.

Slusser and Andres Hernandez, a graduate student in Mexico City, collected measurements of the optical properties of aerosols from three sites within 50 kilometers of Mexico City.

The unique instrumentation of the UVMRP allows separate measurement of the direct sun beam as well as scattered radiation from the rest of the sky. These capabilities allow scientists to deduce the optical properties of aerosols and in many cases identify the point sources of air pollution.

"Aerosols can either cool or warm the planet depending largely on the amount and proportion of radiation that they scatter rather than absorb. With sufficient sites, we can use our instrumentation, combined with satellite retrievals, to make measurements to validate global models on mitigation strategies for reducing the greenhouse warming aerosols around the world. As in the case of ozone depletion, this effort will require participation with scientists, government and industry.

"Less absorbing aerosols will result in more damaging UV and greater production of tropospheric ozone. The Mexicans are in a dilemma in that even if they cleaned up the soot and black carbon from the diesel exhaust, the now scattering aerosol will result in more potential damaging UVB and ozone," Slusser said.

In the next 10 years, scientists hope to apply this technique to a broad global network of major cities and provide information to policy makers and other scientists about human-induced climate change.

"The aerosol work that we performed in Mexico City is relevant to climate modelers who need to understand the influence of mega cities in developing countries such as Mexico on climate change. Climate modelers will need our UVB and visible solar radiation data to validate their computer models. Most models predict greater and greater extremes in weather - precipitation, wind, storms and temperature.

"The UVMRP produces the world's most extensive time series of solar radiation. This record becomes ever more useful as it is extended. Eventually we will be able to separate cyclical influences such as El Nino and the solar cycle from trends and year-to-year variability," Slusser said.

In November 2006, Slusser and Barry Lefer from the University of Houston were awarded a grant from the EPA to study Houston's pollution using the pollution aerosols technique.

UVB is a narrow range of the sun's energy that is only partially absorbed by the ozone layer and can damage biological organisms. Ultraviolet light is a more energetic portion of the spectrum than light that is visible to the naked eye. It is separated into three groups: UVA, which is not damaging to organisms; UVB, which is known to damage DNA and result in mutations; and UVC. Unlike UVB, harmful UVC rays are absorbed entirely by the ozone.


Story Source:

The above story is based on materials provided by Colorado State University. Note: Materials may be edited for content and length.


Cite This Page:

Colorado State University. "Scientists Study Sun's Radiation To Track Pollution Sources." ScienceDaily. ScienceDaily, 19 June 2007. <www.sciencedaily.com/releases/2007/06/070615084250.htm>.
Colorado State University. (2007, June 19). Scientists Study Sun's Radiation To Track Pollution Sources. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2007/06/070615084250.htm
Colorado State University. "Scientists Study Sun's Radiation To Track Pollution Sources." ScienceDaily. www.sciencedaily.com/releases/2007/06/070615084250.htm (accessed August 30, 2014).

Share This




More Earth & Climate News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Volcano Erupts on Papua New Guinea

Raw: Volcano Erupts on Papua New Guinea

AP (Aug. 29, 2014) Several communities were evacuated and some international flights were diverted on Friday after one of the most active volcanos in the region erupts. (Aug. 29) Video provided by AP
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Scientists Have Figured Out Why Rocks Move In Death Valley

Scientists Have Figured Out Why Rocks Move In Death Valley

Newsy (Aug. 28, 2014) The mystery of the moving rocks in Death Valley, California, has finally been solved. Scientists are pointing to a combo of water, ice and wind. Video provided by Newsy
Powered by NewsLook.com
Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins