Featured Research

from universities, journals, and other organizations

Astronomers Develop New Method To Describe Galaxy Features

Date:
July 25, 2007
Source:
University of Alabama
Summary:
Astronomers have developed a new way to characterize galaxy features that is giving scientists additional insight into how galaxies formed and changed over time. They have developed a new method of characterizing density wave features in galaxies. Density waves are mass enhancements in galaxies that appear in the forms of spiral arms, linear bar features, and ring-shaped patterns. Orbiting stars and gas clouds stream in and out of these features much like vehicles in heavy traffic.

A University of Alabama astronomer has co-developed a new way to characterize galaxy features that is giving scientists additional insight into how galaxies formed and changed over time, according to a paper published in the June 2007 issue of The Astronomical Journal.

Related Articles


Dr. Ronald J. Buta, professor of astronomy at UA, and Dr. Xiaolei Zhang, of the Naval Research Laboratory, Washington, D.C., co-authored the paper detailing the new method of characterizing density wave features in galaxies. Density waves are mass enhancements in galaxies that appear in the forms of spiral arms, linear bar features, and ring-shaped patterns. Orbiting stars and gas clouds stream in and out of these features much like vehicles in heavy traffic.

Density waves occur within different regions of a galaxy's disk and often appear as intricately nested segments of patterns. Each segment rotates rigidly around the galaxy center with a fixed angular velocity, or “pattern speed,” and each has a “corotation” radius where the angular orbital speeds of stars and gas clouds equals the pattern speed.

Using near-infrared light as a mass-density tracer, the new method allows the corotations of the wave patterns to be determined via calculating the gravitational potential field produced by the patterns. Once located, the corotations can be compared with the structure of a galaxy and correlated with observed features. From analysis of many images, Zhang and Buta concluded that observed spiral, bar, and ring patterns are density wave modes (natural oscillations of a stellar disk) capable of influencing a galaxy over a long period of time.

Zhang and Buta also confirmed that a previously proposed internal physical process termed “secular dynamical evolution,” which is driven by these density waves, can significantly transform the shapes of galaxies over their lifetime. A phase shift between the stellar mass in the density wave patterns and the gravitational field of those patterns is at the heart of the process. Although the process is slow, it can produce significant changes over the 14 billion year age of the universe, including the buildup of a central bulge. This provides an important link to understanding how galaxies in the universe were formed and how they evolve.


Story Source:

The above story is based on materials provided by University of Alabama. Note: Materials may be edited for content and length.


Cite This Page:

University of Alabama. "Astronomers Develop New Method To Describe Galaxy Features." ScienceDaily. ScienceDaily, 25 July 2007. <www.sciencedaily.com/releases/2007/07/070722115802.htm>.
University of Alabama. (2007, July 25). Astronomers Develop New Method To Describe Galaxy Features. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2007/07/070722115802.htm
University of Alabama. "Astronomers Develop New Method To Describe Galaxy Features." ScienceDaily. www.sciencedaily.com/releases/2007/07/070722115802.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Space & Time News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What NASA Wants To Learn From Its 'Year In Space' Tests

What NASA Wants To Learn From Its 'Year In Space' Tests

Newsy (Mar. 28, 2015) Astronaut Scott Kelly and cosmonaut Mikhail Kornienko will spend a year in space running tests on human physiology and psychology. Video provided by Newsy
Powered by NewsLook.com
Crew Starts One-Year Space Mission

Crew Starts One-Year Space Mission

Reuters - News Video Online (Mar. 28, 2015) Russian-U.S. crew arrives safely at the International Space Station for the start of a ground-breaking year-long stay. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
Why So Many People Think NASA's Asteroid Mission Is A Waste

Why So Many People Think NASA's Asteroid Mission Is A Waste

Newsy (Mar. 27, 2015) The Asteroid Retrieval Mission announced this week bears little resemblance to its grand beginnings. Even NASA scientists are asking, "Why bother?" Video provided by Newsy
Powered by NewsLook.com
Space Station Crew Docks Safely

Space Station Crew Docks Safely

Reuters - News Video Online (Mar. 27, 2015) NASA TV footage shows the successful docking of a Russian Soyuz craft to the International Space Station for a year-long mission. Rough cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins