Featured Research

from universities, journals, and other organizations

Swarming Starlings Help Probe Plasma, Crowds And Stock Market

Date:
August 19, 2007
Source:
University of Warwick
Summary:
Researchers have found a powerful technique that could be used to detect precisely when ordered patterns form in everything from plasma in the solar wind and fusion reactors, to crowds of people, or flocks of birds. The technique could even be used to find unusual patterns in stock market behavior.

Robert Wicks and colleagues have developed a new tool for predicting the behaviour of dynamic systems.
Credit: Image courtesy of University of Warwick

Researchers at the University of Warwick’s Physics Department’s Centre for Fusion, Space and Astrophysics have found a powerful technique that could be used to detect precisely when ordered patterns form in everything from plasma in the solar wind and fusion reactors, to crowds of people, or flocks of birds. The technique could even be used to find unusual patterns in stock market behaviour.

The researchers began their work in a research group interested in plasmas. These are difficult to study at the best of times because the opportunities to view plasma in the solar wind are limited by the small number of satellites observing such things and plasmas in nuclear fusion reactions are obviously not easily accessible.

The University of Warwick researchers were particularly interested in how complex systems such as plasma, crowds of people, or flocks of birds suddenly move from a disordered random state to an ordered one. To crack this problem they developed a technique that combines an earlier study of the flocking behavior of large groups of birds and insects with information technology used to correlate information from a range of parallel signals.

University of Warwick physicist Robert Wicks hit upon the idea of using an information technology tool called mutual information that can detect patterns and correlations from a very small set of points (typically 10 within a large system). In theory he believed that this method would be much more accurate than the normal statistical analysis of such dynamic systems such as crowds or plasmas and it should be particularly good at picking up the "phase transitions" from disorder to order in such complicated systems.

Initially the researchers were stumped as to how to test this theory. The very complexity (and often inaccessibility) that caused the observation problems they were trying to overcome meant there was no accurate real world date set to check their new technique against.

The solution came from the work of Hungarian researcher Tamαs Vicsek, Professor of Physics in the Department of Biological Physics of Eotvos University, Budapest. An expert in the flocking behaviour of birds and insects whose work was profiled in New Scientist in Jan.23,1999 pp 30-33.

Professor Viscek had devised a simple model to replicate the flocking behaviour of colonies of bacteria or large groups of birds and insects such as flocking starlings or swarming locusts. The Warwick research team recognized that the patterns model produced the same sort of order to disorder phase transitions that would be an ideal test for their mutual information based tool.

They applied their "mutual information" based technique to a Viscek model sampling the "signal" from a small number of points within the model and compared their technique to traditional statistical tools used to examine the behaviour of such dynamic systems. They found that in terms of error rate their "mutual information" based technique was four times better than traditional methods in understanding how and when these systems moved from disorder to order.

The new tool has obvious benefits in opening up new understandings of plasmas, crowds and flocking birds and insects but the University of Warwick research team think it could also be used for stock market analysis.

The technique is particularly good at uncovering clumping of particles, movements from order to disorder, and correlating the performance of several points within a dynamic system. Taken together if the technique was applied to stock market shifts it could uncover patterns of clumping in the moving of different stocks. This could help market analysts uncover new and unexpected market connections and mutual dependencies between companies that had no obvious connection yet seem to share similar movements in share price.

The research has been published in a paper entitled: "Mutual Information as a Tool for Identifying Phase Transitions in Dynamical Complex Systems With Limited Data" published in Phys. Rev. E 75, 051125 (2007)


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Cite This Page:

University of Warwick. "Swarming Starlings Help Probe Plasma, Crowds And Stock Market." ScienceDaily. ScienceDaily, 19 August 2007. <www.sciencedaily.com/releases/2007/08/070809105347.htm>.
University of Warwick. (2007, August 19). Swarming Starlings Help Probe Plasma, Crowds And Stock Market. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2007/08/070809105347.htm
University of Warwick. "Swarming Starlings Help Probe Plasma, Crowds And Stock Market." ScienceDaily. www.sciencedaily.com/releases/2007/08/070809105347.htm (accessed October 21, 2014).

Share This



More Computers & Math News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Apple Enters Mobile Payment Business

Apple Enters Mobile Payment Business

AP (Oct. 20, 2014) — Apple is making a strategic bet with the launch of Apple Pay, the mobile pay service aimed at turning your iPhone into your wallet. (Oct. 20) Video provided by AP
Powered by NewsLook.com
Google To Protect Against Piracy ... At A Cost

Google To Protect Against Piracy ... At A Cost

Newsy (Oct. 20, 2014) — Google is changing its search-engine results to protect content producers from piracy — for a price. Video provided by Newsy
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins