Featured Research

from universities, journals, and other organizations

Device To Predict Proper Light Exposure For Human Health

Date:
September 10, 2007
Source:
Rensselaer Polytechnic Institute
Summary:
Scientists have long known that the human body runs like clockwork, guided by a circadian system that responds to daily patterns of light and darkness. Now a team of researchers is developing a personal device to measure daily light intake and activity, which could allow them to predict optimal timing for light therapy to synchronize the circadian clock to the 24-hour solar day and relieve psychosocial stress.

By wearing this small, wireless device being developed by scientists in Rensselaer's Lighting Research Center, users can monitor their daily rest and activity pattern as well as exposure to circadian light. The tool will have the capacity to communicate with the user in real-time to give immediate feedback regarding proper light exposure to promote a synchronized circadian rhythm.
Credit: Image courtesy of Rensselaer Polytechnic Institute

Scientists have long known that the human body runs like clockwork, guided by a circadian system that responds to daily patterns of light and darkness. Now a team of researchers is developing a personal device to measure daily light intake and activity, which could allow them to predict optimal timing for light therapy to synchronize the circadian clock to the 24-hour solar day and relieve psychosocial stress.

In short, scientists are creating a tool to help people literally “lighten up.”

Inadequate or irregular light exposure – something many individuals face on a regular basis – can cause circadian rhythm disruptions that can manifest into sleep and stress-related ailments. Supported by a $1.8 million grant from the National Institutes of Health (NIH), researchers in Rensselaer Polytechnic Institute’s Lighting Research Center (LRC) are creating a small, head-mounted device to measure an individual’s daily rest and activity patterns, as well as exposure to circadian light – short-wavelength light, particularly natural light from the blue sky, that stimulates the circadian system.

The wireless tool will have the capacity to communicate with the user in real-time to give immediate feedback regarding proper light exposure to promote a synchronized circadian rhythm, according to Mark Rea, director of the LRC and principal investigator on the project.

Like a clock that needs to be set daily for accurate time-telling, the circadian clock – an internal regulating mechanism that controls the repetition of biological activities such as core body temperature variations, hormone production and secretion, and sleeping and waking patterns, among other functions in the human body – requires similar “setting” from the light each day. A cycle of very bright days and very dark nights is the perfect regulator for the human circadian system, but patterns of light and dark in today’s modern world are often inconsistent with this cycle.

The advent of electricity has dramatically changed our light and dark exposure patterns, and indoor lighting can be insufficient to stimulate the circadian clock, Rea said. Exposure to indoor light sources during the night, including computer screens, may be too bright or seen for too long, to properly set the timing of the circadian clock. These disruptions can desynchronize the circadian rhythm from the solar daytime/nighttime cycle, leading to sleep problems and psychosocial stress such as mood and eating disorders, depression, and possibly immune deficiencies.

“Outdoor light levels during the day – even under cloud cover or during the winter – are of much higher levels than those found in windowless, electrically illuminated buildings, and this absence of suitable light may induce ‘circadian darkness,’” Rea said. “If an individual’s circadian light intake is deficient during waking hours, our device will be able to reliably predict the light therapy necessary to resynchronize the circadian phase with the solar day.”

Such treatments could range from standing outside for 15 minutes to sitting in front of a light box fitted with blue LEDs for a certain amount of time, says Rea.

Rea and his colleague Mariana Figueiro, assistant professor in the LRC and co-PI on the project, will collaborate with scientists from Brown and Yale universities on a study to uncover participants’ baseline circadian rhythms by collecting information regarding each person’s sleeping and waking cycles, light intake, and fluctuations in sleep quality, stress markers, and gene expression, which are all controlled by the circadian rhythm. Then, using light therapy treatment, the team will attempt to shift each participant’s circadian phase.

The results of the study will provide scientists in the LRC with the information they need to determine the level of accuracy required for the new device to accurately predict light-induced shifting of the circadian phase, according to Figueiro.

Additionally, monitoring each participant’s genes before, during, and after the light therapy may help the researchers determine whether or not light exposure can express or silence genes influenced by the circadian system, an emerging area of interest to the circadian and cancer research communities who have begun to focus on the possibility that our circadian clock controls the expression of a wide variety of genes, including many cancer-related genes.

Once developed, the new light monitoring and therapy prediction device has the potential to positively affect the lives of millions who suffer from circadian rhythm sleep disorders. Among others, potential populations that could benefit from the tool include college students, who experience a delayed sleep phase and go to bed and arise later than most people; international business travelers who suffer from jet lag; and shift workers who are often active at times opposite the solar day, according to the researchers.

This project was funded by the National Institutes of Health’s Exposure Biology Program – a component of its new Genes, Environment, and Health Initiative – which focuses on the development of innovative technologies to measure environmental exposures, diet, physical activity, psychosocial stress, and addictive substances that contribute to the development of disease.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute. Note: Materials may be edited for content and length.


Cite This Page:

Rensselaer Polytechnic Institute. "Device To Predict Proper Light Exposure For Human Health." ScienceDaily. ScienceDaily, 10 September 2007. <www.sciencedaily.com/releases/2007/09/070907235424.htm>.
Rensselaer Polytechnic Institute. (2007, September 10). Device To Predict Proper Light Exposure For Human Health. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2007/09/070907235424.htm
Rensselaer Polytechnic Institute. "Device To Predict Proper Light Exposure For Human Health." ScienceDaily. www.sciencedaily.com/releases/2007/09/070907235424.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obesity Rates Steady Even As Americans' Waistlines Expand

Obesity Rates Steady Even As Americans' Waistlines Expand

Newsy (Sep. 17, 2014) Researchers are puzzled as to why obesity rates remain relatively stable as average waistlines continue to expand. Video provided by Newsy
Powered by NewsLook.com
President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins