Featured Research

from universities, journals, and other organizations

Official Kilogram Losing Mass: Scientists Propose Redefining It As A Precise Number Of Carbon Atoms

Date:
September 21, 2007
Source:
Georgia Institute of Technology
Summary:
How much is a kilogram? It turns out that nobody can say for sure, at least not in a way that won't change ever so slightly over time. The official kilogram -- a cylinder cast 118 years ago from platinum and iridium and known as the International Prototype Kilogram or "Le Gran K" -- has been losing mass, about 50 micrograms at last check. Now two US professors say it's time to define the kilogram in a new and more elegant way. They've launched a campaign aimed at redefining the kilogram as the mass of a very large -- but precisely-specified -- number of carbon-12 atoms.

The international prototype of the kilogram is a cylinder 39 mm in height and 39 mm in diameter. It consists of an alloy of 90% platinum and 10% iridium (Pt-Ir) and has a density of approximately 21500 kg/m3. It is maintained at the International Bureau of Weights and Measures (BIPM) in S่vres near Paris.
Credit: Image courtesy of BIPM

How much is a kilogram?

It turns out that nobody can say for sure, at least not in a way that won't change ever so slightly over time. The official kilogram -- a cylinder cast 118 years ago from platinum and iridium and known as the International Prototype Kilogram or "Le Gran K" -- has been losing mass, about 50 micrograms at last check. The change is occurring despite careful storage at a facility near Paris.

That's not so good for a standard the world depends on to define mass.

Now, two U.S. professors -- a physicist and mathematician -- say it's time to define the kilogram in a new and more elegant way that will be the same today, tomorrow and 118 years from now. They've launched a campaign aimed at redefining the kilogram as the mass of a very large -- but precisely-specified -- number of carbon-12 atoms.

"Our standard would eliminate the need for a physical artifact to define what a kilogram is," said Ronald F. Fox, a Regents' Professor Emeritus in the School of Physics at the Georgia Institute of Technology. "We want something that is logically very simple to understand."

Their proposal is that the gram -- 1/1000th of a kilogram -- would henceforth be defined as the mass of exactly 18 x 14074481 (cubed) carbon-12 atoms.

The proposal, made by Fox and Theodore P. Hill -- a Professor Emeritus in the Georgia Tech School of Mathematics -- first assigns a specific value to Avogadro's constant. Proposed in the 1800s by Italian scientist Amedeo Avogadro, the constant represents the number of atoms or molecules in one mole of a pure material -- for instance, the number of carbon-12 atoms in 12 grams of the element. However, Avogadro's constant isn't a specific number; it's a range of values that can be determined experimentally, but not with enough precision to be a single number.

Spurred by Hill's half-serious question about whether Avogadro's constant was an even or odd number, in the fall of 2006 Fox and Hill submitted a paper to Physics Archives in which they proposed assigning a specific number to the constant -- one of about 10 possible values within the experimental range. The authors pointed out that a precise Avogadro's constant could also precisely redefine the measure of mass, the kilogram.

Their proposal drew attention from the editors of American Scientist, who asked for a longer article published in March 2007. The proposal has so far drawn five letters, including one from Paul J. Karol, chair of the Committee on Nomenclature, Terminology and Symbols of the American Chemical Society. Karol added his endorsement to the proposal and suggested making the number divisible by 12 -- which Fox and Hill did in an addendum by changing their number's final digit from 8 to 6. So the new proposal for Avogadro's constant became 84446886 (cubed), still within the range of accepted values.

Fast-forward to September 2007, when Fox read an Associated Press article on the CNN.com Web site about the mass disappearing from the International Prototype Kilogram. While the AP said the missing mass amounted to no more than "the weight of a fingerprint," Fox argues that the amount could be significant in a world that is measuring time in ultra-sub-nanoseconds and length in ultra-sub-nanometers.

So Fox and Hill fired off another article to Physics Archive, this one proposing to redefine the gram as 1/12th the mass of a mole of carbon 12 -- a mole long being defined as Avogrado's number of atoms. They now hope to generate more interest in their idea for what may turn out to be a competition of standards proposals leading up to a 2011 meeting of the International Committee for Weights and Measures.

At least two other proposals for redefining the kilogram are under discussion. They include replacing the platinum-iridium cylinder with a sphere of pure silicon atoms, and using a device known as the "watt balance" to define the kilogram using electromagnetic energy. Both would offer an improvement over the existing standard -- but not be as simple as what Fox and Hill have proposed, nor be exact, they say.

"Using a perfect numerical cube to define these constants yields the same level of significance -- eight or nine digits -- as in those integers that define the second and the speed of light," Hill said. "A purely mathematical definition of the kilogram is experimentally neutral -- researchers may then use any laboratory method they want to approximate exact masses."

The kilogram is the last major standard defined by a physical artifact rather than a fundamental physical property. In 1983, for instance, the distance represented by a meter was redefined by how far light travels in 1/299,792,458 seconds -- replacing a metal stick with two marks on it.

"We suspect that there will be some public debate about this issue," Fox said. "We want scientists and science teachers and others to think about this problem because we think they can have an impact. Public discussion may play an important role in determining how one of the world's basic physical constants is defined."

How important is this issue to the world's future technological development"

"When you make physical and chemical measurements, it's important to have as high a precision as possible, and these standards really define the limits of precision," Fox said. "The lack of an accurate standard leaves some inconsistency in how you state results. Having a unique standard could eliminate that."

While the new definition would do away with the need for a physical representation of mass, Fox says people who want a physical artifact could still have one -- though carbon can't actually form a perfect cube with the right number of atoms. And building one might take some time.

"You could imagine having a lump of matter that actually had exactly the right number of atoms in it," Fox noted. "If you could build it by some kind of self-assembly process -- as opposed to building it atom-by-atom, which would take a few billion years -- you could have new kilogram artifact made of carbon. But there's really no need for that. Even if you built a perfect kilogram, it would immediately be inaccurate as soon as a single atom was sloughed off or absorbed."


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "Official Kilogram Losing Mass: Scientists Propose Redefining It As A Precise Number Of Carbon Atoms." ScienceDaily. ScienceDaily, 21 September 2007. <www.sciencedaily.com/releases/2007/09/070921110735.htm>.
Georgia Institute of Technology. (2007, September 21). Official Kilogram Losing Mass: Scientists Propose Redefining It As A Precise Number Of Carbon Atoms. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2007/09/070921110735.htm
Georgia Institute of Technology. "Official Kilogram Losing Mass: Scientists Propose Redefining It As A Precise Number Of Carbon Atoms." ScienceDaily. www.sciencedaily.com/releases/2007/09/070921110735.htm (accessed September 3, 2014).

Share This



More Matter & Energy News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Halliburton Reaches $1B Gulf Spill Settlement

Halliburton Reaches $1B Gulf Spill Settlement

AP (Sep. 2, 2014) — Halliburton's agreement to pay more than $1 billion to settle numerous claims involving the 2010 BP oil spill could be a way to diminish years of costly litigation. A federal judge still has to approve the settlement. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Google Teases India Event, Possible Android One Reveal

Google Teases India Event, Possible Android One Reveal

Newsy (Sep. 1, 2014) — Google has announced a Sept. 15 event in India during which they're expected to reveal their Android One phones. Video provided by Newsy
Powered by NewsLook.com
Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins