Featured Research

from universities, journals, and other organizations

New Pain Killer Allows Other Touch Sensations Through

Date:
October 4, 2007
Source:
NIH, National Institute of Neurological Disorders and Stroke
Summary:
A combination of two drugs can selectively block pain-sensing neurons in rats without impairing movement or other sensations such as touch, according to a new study. Scientists have combined a normally inactive lidocaine derivative with capsaicin, the 'heat'-generating ingredient in chili peppers, to produce pain-specific local anesthesia. The finding suggests an improved way to treat pain from childbirth and surgical procedures. It may also lead to new treatments to help the millions of Americans who suffer from chronic pain.

Scientists have combined a normally inactive lidocaine derivative with capsaicin, the 'heat'-generating ingredient in chili peppers, to produce pain-specific local anesthesia. When injected into rats, this combination completely blocked pain without interfering with either motor function or sensitivity to non-painful stimuli. The finding suggests an improved way to treat pain from childbirth and surgical procedures. It may also lead to new treatments to help the millions of Americans who suffer from chronic pain.

The study used a combination of capsaicin -- the substance that makes chili peppers hot -- and a drug called QX-314. This combination exploits a characteristic unique to pain-sensing neurons, also called nociceptors, in order to block their activity without impairing signals from other cells. In contrast, most pain relievers used for surgical procedures block activity in all types of neurons. This can cause numbness, paralysis and other nervous system disturbances.

"The Holy Grail in pain science is to eliminate pathologic pain without impairing thinking, alertness, coordination, or other vital functions of the nervous system. This finding shows that a specific combination of two molecules can block only pain-related neurons. It holds the promise of major future breakthroughs for the millions of persons who suffer with disabling pain," says Story C. Landis, Ph.D., director of the National Institute of Neurological Disorders and Stroke (NINDS) at the NIH, which funds the investigators' research along with the National Institute of Dental and Craniofacial Research (NIDCR) and the National Institute of General Medical Sciences (NIGMS). NINDS and NIDCR are co-chairs of the NIH Pain Consortium. The study appears in the October 4, 2007, issue of Nature.*

Lidocaine, the most commonly used local anesthetic, relieves pain by blocking electric currents in all nerve cells. Although it is a lidocaine derivative, QX-314 alone cannot get through cell membranes to block their electrical activity.

That's where capsaicin comes in. It opens large pores called TRPV1 channels -- found only within the cell membrane of pain-sensing neurons. With these channels propped open by capsaicin, QX-314 can pass through and selectively block the cells' activity.

The research team, led by Clifford J. Woolf, M.D., Ph.D., of Massachusetts General Hospital and Harvard Medical School and Bruce Bean, Ph.D., at Harvard Medical School, tested the combination of capsaicin and QX-314 in neurons isolated in Petri dishes and found that it blocked pain-sensing neurons without affecting other nerve cells. They then injected the drugs into the paws of rats and found that the treated animals could tolerate much more heat than usual. They also injected the two drugs near the sciatic nerve that runs down the hind leg. The treated rats did not show any signs of pain, and five of the six animals continued to move and behave normally. This showed that the drugs could block pain without impairing motor neurons that control movement.

The drug combination took half an hour to fully block pain in the rats. However, once it began, the pain relief lasted for several hours.

"Current nerve blocks cause paralysis and total numbness," Dr. Woolf says. "This new strategy could profoundly change pain treatment in the perioperative setting."

The treatment tested in this study is unique in that it uses a type of ion channel (TRPV1 channels) as an avenue to deliver medication. Ion channels are pores in the cell membrane that control the flow of electrically charged ions in and out of cells. "I'm not aware of any other strategy that uses a channel within cells to deliver a drug to a select set of cells," Dr. Woolf says. The strategy builds on research done since the 1970's, largely supported by NIH, that shows how electrical signaling in the nervous system results from expression of dozens of different types of ion channels. Some of these ion channels are found only in specific types of neurons.

"This project is a nice illustration of how research trying to understand very basic biological principles can have practical applications," says Dr. Bean. This type of treatment has great potential to improve pain treatment during childbirth, dental procedures, and surgery, the researchers say. "Surgical pain is the obvious first application for this type of treatment," Dr. Woolf says. However, similar therapies might eventually be useful for treating chronic pain, he adds. Chronic pain continues for weeks, months, or even years and can cause severe problems, and is often resistant to standard medical treatments.

While the researchers focused on finding a treatment for pain, this strategy might also be useful for treating itch from eczema, poison ivy rashes, and other conditions, Dr. Woolf says. Like pain sensations, itch signals come from nociceptors. One problem with the combination treatment is that the capsaicin can cause unpleasant burning sensations until the QX-314 takes effect, Dr. Woolf says. Administering the QX-314 ten minutes before the capsaicin minimized this problem in rats. The investigators are now looking for ways to open the TRPV1 channels without the burning sensations, perhaps by finding an alternative to capsaicin. They also hope to find ways of prolonging the pain relief. Eventually, they might be able to develop pills that will stop pain signals without requiring injections, Dr. Woolf adds.

*Reference: Binshtok AM, Bean BP, Woolf CJ. "Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers." Nature, October 4, 2007, Vol. 449, No. 7162, pp. 607-610.


Story Source:

The above story is based on materials provided by NIH, National Institute of Neurological Disorders and Stroke. Note: Materials may be edited for content and length.


Cite This Page:

NIH, National Institute of Neurological Disorders and Stroke. "New Pain Killer Allows Other Touch Sensations Through." ScienceDaily. ScienceDaily, 4 October 2007. <www.sciencedaily.com/releases/2007/10/071003130852.htm>.
NIH, National Institute of Neurological Disorders and Stroke. (2007, October 4). New Pain Killer Allows Other Touch Sensations Through. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2007/10/071003130852.htm
NIH, National Institute of Neurological Disorders and Stroke. "New Pain Killer Allows Other Touch Sensations Through." ScienceDaily. www.sciencedaily.com/releases/2007/10/071003130852.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins