Featured Research

from universities, journals, and other organizations

New Plastic Is Strong As Steel, Transparent

Date:
October 5, 2007
Source:
University of Michigan
Summary:
By mimicking a brick-and-mortar molecular structure found in seashells, researchers created a composite plastic that's as strong as steel, but lighter and transparent. It's made of layers of clay nanosheets and a water-soluble polymer that shares chemistry with white glue.

Detailed views of the new composite plastic that's as strong as steel but lighter and transparent. It's made of layers of clay nanosheets and a water-soluble polymer that shares chemistry with white glue.
Credit: Image courtesy of University of Michigan

By mimicking a brick-and-mortar molecular structure found in seashells, University of Michigan researchers created a composite plastic that's as strong as steel but lighter and transparent.

It's made of layers of clay nanosheets and a water-soluble polymer that shares chemistry with white glue.

Engineering professor Nicholas Kotov almost dubbed it "plastic steel," but the new material isn't quite stretchy enough to earn that name. Nevertheless, he says its further development could lead to lighter, stronger armor for soldiers or police and their vehicles. It could also be used in microelectromechanical devices, microfluidics, biomedical sensors and valves and unmanned aircraft.

Kotov and other U-M faculty members are authors of a paper on this composite material, "Ultrastrong and Stiff Layered Polymer Nanocomposites," published in the Oct. 5 edition of Science.

The scientists solved a problem that has confounded engineers and scientists for decades: Individual nano-size building blocks such as nanotubes, nanosheets and nanorods are ultrastrong. But larger materials made out of bonded nano-size building blocks were comparatively weak. Until now.

"When you tried to build something you can hold in your arms, scientists had difficulties transferring the strength of individual nanosheets or nanotubes to the entire material," Kotov said. "We've demonstrated that one can achieve almost ideal transfer of stress between nanosheets and a polymer matrix."

The researchers created this new composite plastic with a machine they developed that builds materials one nanoscale layer after another.

The robotic machine consists of an arm that hovers over a wheel of vials of different liquids. In this case, the arm held a piece of glass about the size of a stick of gum on which it built the new material.

The arm dipped the glass into the glue-like polymer solution and then into a liquid that was a dispersion of clay nanosheets. After those layers dried, the process repeated. It took 300 layers of each the glue-like polymer and the clay nanosheets to create a piece of this material as thick as a piece of plastic wrap.

Mother of pearl, the iridescent lining of mussel and oyster shells, is built layer-by-layer like this. It's one of the toughest natural mineral-based materials.

The glue-like polymer used in this experiment, which is polyvinyl alcohol, was as important as the layer-by-layer assembly process. The structure of the "nanoglue" and the clay nanosheets allowed the layers to form cooperative hydrogen bonds, which gives rise to what Kotov called "the Velcro effect." Such bonds, if broken, can reform easily in a new place.

The Velcro effect is one reason the material is so strong. Another is the arrangement of the nanosheets. They're stacked like bricks, in an alternating pattern.

"When you have a brick-and-mortar structure, any cracks are blunted by each interface," Kotov explained. "It's hard to replicate with nanoscale building blocks on a large scale, but that's what we've achieved."

Collaborators include: mechanical engineering professor Ellen Arruda; aerospace engineering professor Anthony Waas; chemical, materials science and biomedical engineering professor Joerg Lahann; and chemistry professor Ayyalusamy Ramamoorthy. Kotov is a professor of chemical engineering, materials science and engineering, and biomedical engineering.

The nanomechanical behavior of these materials is being modeled by professor Arruda's group; Waas and his group are working on applications in aviation.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan. "New Plastic Is Strong As Steel, Transparent." ScienceDaily. ScienceDaily, 5 October 2007. <www.sciencedaily.com/releases/2007/10/071004143114.htm>.
University of Michigan. (2007, October 5). New Plastic Is Strong As Steel, Transparent. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2007/10/071004143114.htm
University of Michigan. "New Plastic Is Strong As Steel, Transparent." ScienceDaily. www.sciencedaily.com/releases/2007/10/071004143114.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins