Science News
from research organizations

What Makes Quantum Dots Blink?

Date:
October 7, 2007
Source:
DOE/Argonne National Laboratory
Summary:
In order to learn more about the origins of quantum dot blinking, researchers have developed a method to characterize it on faster time scales than have previously been accessed. Nanocrystals of semiconductor material, also known as quantum dots, are being intensively investigated for applications such as light-emitting diodes, solid-state lighting, lasers, and solar cells.
Share:
       
FULL STORY

Matthew Pelton of Argonne's Center for Nanoscale Materials adjusts a green laser used to monitor the sporadic blinking of quantum dots.
Credit: Image courtesy of DOE/Argonne National Laboratory

In order to learn more about the origins of quantum dot blinking, researchers from the U.S. Department of Energy's Argonne National Laboratory, the University of Chicago and the California Institute of Technology have developed a method to characterize it on faster time scales than have previously been accessed.

Nanocrystals of semiconductor material, also known as quantum dots, are being intensively investigated for applications such as light-emitting diodes, solid-state lighting, lasers, and solar cells. They are also already being applied as fluorescent labels for biological imaging, providing several advantages over the molecular dyes typically used, including a wider range of emitted colors and much greater stability.

Quantum dots have great promise as light-emitting materials, because the wavelength, or color, of light that the quantum dots give off can be very widely tuned simply by changing the size of the nanoparticles. If a single dot is observed under a microscope, it can be seen to randomly switch between bright and dark states.

This flickering, or blinking, behavior has been widely studied, and it has been found that a single dot can blink off for times that can vary between microseconds and several minutes. The causes of the blinking, though, remain the subject of intense study.

The methods developed by Matt Pelton of Argonne's Center for Nanoscale Materials and his team of collaborators has revealed a previously unobserved change in the blinking behavior on time scales less than a few microseconds. This observation is consistent with the predictions of a model for quantum-dot blinking previously developed by Nobel Laureate Rudolph Marcus, contributor to this research, and his co-workers. In this model, the blinking is controlled by the random fluctuation of energy levels in the quantum dot relative to the energies of trap states on the surface of the nanocrystal or in the nearby environment.

The results of this research provide new insight into the mechanism of quantum-dot blinking, and should help in the development of methods to control and suppress blinking. Detailed results of this work have been published in a paper in the Proceedings of the National Academy of Sciences.

Argonne's Center for Nanoscale Materials work for this research was funded by the U.S. Department of Energy's Office of Basic Energy Science.


Story Source:

The above story is based on materials provided by DOE/Argonne National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Argonne National Laboratory. "What Makes Quantum Dots Blink?." ScienceDaily. ScienceDaily, 7 October 2007. <www.sciencedaily.com/releases/2007/10/071004165602.htm>.
DOE/Argonne National Laboratory. (2007, October 7). What Makes Quantum Dots Blink?. ScienceDaily. Retrieved May 30, 2015 from www.sciencedaily.com/releases/2007/10/071004165602.htm
DOE/Argonne National Laboratory. "What Makes Quantum Dots Blink?." ScienceDaily. www.sciencedaily.com/releases/2007/10/071004165602.htm (accessed May 30, 2015).

Share This Page: