Featured Research

from universities, journals, and other organizations

New Wastewater Treatment System Removes Heavy Metals

Date:
October 22, 2007
Source:
Universidad Rey Juan Carlos
Summary:
The presence in the environment of large quantities of toxic metals such as mercury, lead, cadmium, zinc or others, poses serious health risks to humans, and this threat puts the scientific community under pressure to develop new methods to detect and eliminate toxic contaminants from wastewaters in efficient and economically viable ways. A new type of nanomaterial called nanostructured silica has been found to fulfill the requisites necessary for these applications.

The presence in the environment of large quantities of toxic metals such as mercury, lead, cadmium, zinc or others, poses serious health risks to humans, and this threat puts the scientific community under pressure to develop new methods to detect and eliminate toxic contaminants from wastewaters in efficient and economically viable ways.

Resulting from the combination of water treatment investigations with the latest in material science, a new type of nanomaterial called nanostructured silica has been found to fulfil the requisites necessary for these applications.

With its large surface area and regular pores, it is an ideal material that after a functionalization process that links to its surface diverse organic ligands has the capability of being able to extract heavy metals from wastewaters. This capacity also allows its use as a high sensitivity detection tool for these toxic metals, and considering that the contamination levels permitted in drinking water are increasingly restrictive; functionalized silica offers additional benefits over other water treatment methods.

The design of this nanostructured functionalized silica is based on the emulation on the material of the reaction that heavy metals have with some biomolecules in living cells. Therefore a good understanding of the reaction that bonds such metals to particular functional groups on living cells is of great use to determine the best functional groups to be used on the surface of the nanostructured material; for example, it has been detected that heavy metals interact mainly with functional groups containing oxygen, nitrogen and sulphur.

Following the same line of thinking, the researchers from the URJC, managed by Doctor Isabel Sierra, have achieved a great improvement in heavy metal absorption by creating new materials using different types of silica such as MCM-41 and HMS and modified them with 5-mercapto-1-methylthiazole making them capable of collecting lead and zinc.

Their study has also demonstrated that the prepared materials are capable of several cycles of absorption/desorption. With the added benefit that the retained materials can be recovered and then reused, and this has important economical benefits for industry and society.

This investigation has been published on the latest releases of Journal of Separation Science and Journal of Colloid Interface Science.


Story Source:

The above story is based on materials provided by Universidad Rey Juan Carlos. Note: Materials may be edited for content and length.


Cite This Page:

Universidad Rey Juan Carlos. "New Wastewater Treatment System Removes Heavy Metals." ScienceDaily. ScienceDaily, 22 October 2007. <www.sciencedaily.com/releases/2007/10/071020110548.htm>.
Universidad Rey Juan Carlos. (2007, October 22). New Wastewater Treatment System Removes Heavy Metals. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2007/10/071020110548.htm
Universidad Rey Juan Carlos. "New Wastewater Treatment System Removes Heavy Metals." ScienceDaily. www.sciencedaily.com/releases/2007/10/071020110548.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins