Featured Research

from universities, journals, and other organizations

Role Of A Key Enzyme In Reducing Heart Disease Identified

Date:
October 30, 2007
Source:
Virginia Commonwealth University
Summary:
Researchers have identified the role of a key enzyme called CEH in reducing heart disease, paving the way for new target therapies to reduce plaques in the arteries and perhaps in the future, help predict a patient's susceptibility to heart disease.

A macrophage foam cell contained fat droplets (green) that are surrounded by CEH (red) showing how this enzyme associates with fat and releases cholesterol to be picked up by HDL. The nucleus of the cell is stained blue.
Credit: Bernard J. Fisher/VCU

Virginia Commonwealth University researchers have identified the role of a key enzyme called CEH in reducing heart disease, paving the way for new target therapies to reduce plaques in the arteries and perhaps in the future, help predict a patient's susceptibility to heart disease.

Furthermore, unlike currently available therapies, which prevent or reduce the formation of new plaques, increasing CEH may also reduce existing plaques.

Heart disease results from the formation of plaques in the coronary artery, which supplies blood to the heart. Plaques form when monocytes, which are cells from the blood, enter the wall of the artery and consume large amounts of the "bad" cholesterol, or LDL. The monocytes then become artery-clogging foam cells. The only way for foam cells to get rid of their cholesterol is to make it available to HDL, or "good" cholesterol, for removal. A key enzyme present in the foam cells called cholesteryl ester hydrolase (CEH) regulates the amount of cholesterol that can be removed by HDL.

In this study, led by Shobha Ghosh, Ph.D., an associate professor of internal medicine, pulmonary division in the VCU School of Medicine, the team examined, for the first time, how cells in the artery wall make cholesterol available for removal by HDL. Using transgenic mice, which were fed a high fat and cholesterol-rich diet, the team was able to show that by increasing the removal of cholesterol from the artery clogging foam cells, the mice with the human gene for CEH developed significantly less heart disease.

"Currently the emphasis for managing heart disease is on reducing the "bad" cholesterol or LDL in the circulation. Our study demonstrates that if you can increase the removal of cholesterol from the plaques, even without changing the LDL levels, there is still a significant reduction in the plaques," said Ghosh.

"These findings not only change the current thinking of managing heart disease but also clearly open avenues for the development of new therapies. By identifying CEH as a new therapeutic target, we expect that in the future patients with heart disease will have more options to aggressively treat heart disease. In addition, by determining the levels of CEH in human blood cells, we hope to be able to predict susceptibility to heart disease in the future," she said.

According to Ghosh, the team focused their efforts on the examination of macrophage foam cells, which are responsible for storing large amounts of cholesterol and lead to the clogging of the arteries by forming plaques. The findings appear in the October print issue of the Journal of Clinical Investigation.

The team is actively exploring the mechanisms underlying CEH regulation and to determine how its activity can be increased in order to reduce heart disease.

This work was supported by grants from the National Heart, Lung and Blood Institute.

Ghosh's team included Bin Zhao, Ph.D., and Jingmei Song, M.S., from the VCU Department of Internal Medicine; Woon N. Chow, B.S., from the VCU Department of Anatomy and Neurobiology. The team collaborated with Richard W. St. Clair, Ph.D., and Lawrence L. Rudel, Ph.D., from the Department of Pathology, Lipid Sciences Section at Wake Forest University School of Medicine, North Carolina.


Story Source:

The above story is based on materials provided by Virginia Commonwealth University. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Commonwealth University. "Role Of A Key Enzyme In Reducing Heart Disease Identified." ScienceDaily. ScienceDaily, 30 October 2007. <www.sciencedaily.com/releases/2007/10/071025080843.htm>.
Virginia Commonwealth University. (2007, October 30). Role Of A Key Enzyme In Reducing Heart Disease Identified. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2007/10/071025080843.htm
Virginia Commonwealth University. "Role Of A Key Enzyme In Reducing Heart Disease Identified." ScienceDaily. www.sciencedaily.com/releases/2007/10/071025080843.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins