Featured Research

from universities, journals, and other organizations

Role Of A Key Enzyme In Reducing Heart Disease Identified

Date:
October 30, 2007
Source:
Virginia Commonwealth University
Summary:
Researchers have identified the role of a key enzyme called CEH in reducing heart disease, paving the way for new target therapies to reduce plaques in the arteries and perhaps in the future, help predict a patient's susceptibility to heart disease.

A macrophage foam cell contained fat droplets (green) that are surrounded by CEH (red) showing how this enzyme associates with fat and releases cholesterol to be picked up by HDL. The nucleus of the cell is stained blue.
Credit: Bernard J. Fisher/VCU

Virginia Commonwealth University researchers have identified the role of a key enzyme called CEH in reducing heart disease, paving the way for new target therapies to reduce plaques in the arteries and perhaps in the future, help predict a patient's susceptibility to heart disease.

Furthermore, unlike currently available therapies, which prevent or reduce the formation of new plaques, increasing CEH may also reduce existing plaques.

Heart disease results from the formation of plaques in the coronary artery, which supplies blood to the heart. Plaques form when monocytes, which are cells from the blood, enter the wall of the artery and consume large amounts of the "bad" cholesterol, or LDL. The monocytes then become artery-clogging foam cells. The only way for foam cells to get rid of their cholesterol is to make it available to HDL, or "good" cholesterol, for removal. A key enzyme present in the foam cells called cholesteryl ester hydrolase (CEH) regulates the amount of cholesterol that can be removed by HDL.

In this study, led by Shobha Ghosh, Ph.D., an associate professor of internal medicine, pulmonary division in the VCU School of Medicine, the team examined, for the first time, how cells in the artery wall make cholesterol available for removal by HDL. Using transgenic mice, which were fed a high fat and cholesterol-rich diet, the team was able to show that by increasing the removal of cholesterol from the artery clogging foam cells, the mice with the human gene for CEH developed significantly less heart disease.

"Currently the emphasis for managing heart disease is on reducing the "bad" cholesterol or LDL in the circulation. Our study demonstrates that if you can increase the removal of cholesterol from the plaques, even without changing the LDL levels, there is still a significant reduction in the plaques," said Ghosh.

"These findings not only change the current thinking of managing heart disease but also clearly open avenues for the development of new therapies. By identifying CEH as a new therapeutic target, we expect that in the future patients with heart disease will have more options to aggressively treat heart disease. In addition, by determining the levels of CEH in human blood cells, we hope to be able to predict susceptibility to heart disease in the future," she said.

According to Ghosh, the team focused their efforts on the examination of macrophage foam cells, which are responsible for storing large amounts of cholesterol and lead to the clogging of the arteries by forming plaques. The findings appear in the October print issue of the Journal of Clinical Investigation.

The team is actively exploring the mechanisms underlying CEH regulation and to determine how its activity can be increased in order to reduce heart disease.

This work was supported by grants from the National Heart, Lung and Blood Institute.

Ghosh's team included Bin Zhao, Ph.D., and Jingmei Song, M.S., from the VCU Department of Internal Medicine; Woon N. Chow, B.S., from the VCU Department of Anatomy and Neurobiology. The team collaborated with Richard W. St. Clair, Ph.D., and Lawrence L. Rudel, Ph.D., from the Department of Pathology, Lipid Sciences Section at Wake Forest University School of Medicine, North Carolina.


Story Source:

The above story is based on materials provided by Virginia Commonwealth University. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Commonwealth University. "Role Of A Key Enzyme In Reducing Heart Disease Identified." ScienceDaily. ScienceDaily, 30 October 2007. <www.sciencedaily.com/releases/2007/10/071025080843.htm>.
Virginia Commonwealth University. (2007, October 30). Role Of A Key Enzyme In Reducing Heart Disease Identified. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2007/10/071025080843.htm
Virginia Commonwealth University. "Role Of A Key Enzyme In Reducing Heart Disease Identified." ScienceDaily. www.sciencedaily.com/releases/2007/10/071025080843.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins