Featured Research

from universities, journals, and other organizations

Microbes Plus Sugars Equals Hydrogen Fuel?

Date:
November 3, 2007
Source:
US Department of Agriculture
Summary:
Wanted: Bacterium that can eat sugar or sludge; must be team player or electrochemically active; ability to survive without oxygen, a plus. Thus might read the bacterial "job description" posted by scientists, who are collaborating on ways to make microbial fuel cells more efficient and practical.

To isolate bacteria present in swine waste samples, microbiologists Rhonda Zeltwanger and Michael Cotta work in an anaerobic glove box. Because most of these bacteria are strict anaerobes, many manipulations must be performed in the absence of oxygen.
Credit: USDA, Photo by Keith Weller

Wanted: Bacterium that can eat sugar or sludge; must be team player or electrochemically active; ability to survive without oxygen, a plus. Thus might read the bacterial "job description" posted by Agricultural Research Service (ARS) and Washington University (WU) scientists, who are collaborating on ways to make microbial fuel cells more efficient and practical.

According to Mike Cotta, who leads the ARS Fermentation Biotechnology Research Unit, Peoria, Ill., the project with WU arose from a mutual interest in developing sustainable methods of producing energy that could diminish U.S. reliance on crude oil.

Cotta's team specializes in using bacteria, yeasts or other microorganisms inside bioreactors to do work, such as ferment grain sugars into fuel ethanol. At WU in St. Louis, Mo., assistant professor Lars Angenent is investigating fuel cell systems that use mixtures of bacteria to treat organic wastewater and catalyze the release of electrons and protons, which then can be used to produce electricity or hydrogen fuel.

In September 2006, the researchers pooled their labs' resources and expertise to undertake a three-year cooperative project. One resource they'll share is the ARS Peoria-based Microbial Culture Collection, which houses about 87,000 accessions of freeze-dried microbes from around the world.

Using the collection's database information, the team is searching for microbes that "eat" biomass sugars (e.g., glucose and xylose from corn stover) and are electrochemically active. That means they can transfer electrons from fuel cell sugars without help from costly chemicals called mediators. The electrons, after traveling a circuit, combine with protons in a cathode chamber, forming hydrogen, which can be burned or converted into electricity.

Bacteroides and Shewanella are among bacteria species used to start the process.

Hydrogen's appeal stems from its natural abundance and capacity to store and release energy in a nonpolluting manner. The challenge is commercially producing it from sources other than fossil fuels, which are in limited supply and nonrenewable. About 95 percent of U.S. hydrogen comes from petroleum or natural gas via a process called steam reforming.


Story Source:

The above story is based on materials provided by US Department of Agriculture. Note: Materials may be edited for content and length.


Cite This Page:

US Department of Agriculture. "Microbes Plus Sugars Equals Hydrogen Fuel?." ScienceDaily. ScienceDaily, 3 November 2007. <www.sciencedaily.com/releases/2007/10/071026132750.htm>.
US Department of Agriculture. (2007, November 3). Microbes Plus Sugars Equals Hydrogen Fuel?. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2007/10/071026132750.htm
US Department of Agriculture. "Microbes Plus Sugars Equals Hydrogen Fuel?." ScienceDaily. www.sciencedaily.com/releases/2007/10/071026132750.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins