Featured Research

from universities, journals, and other organizations

Novel Way To Remove Iron From Ferritin Could Dramatically Improve Sickle Cell Treatment

Date:
November 5, 2007
Source:
Children's Hospital & Research Center at Oakland
Summary:
A small protein or heptapeptide could be used to accelerate the removal of iron from ferritin, according to new research. The results of this study may help scientists develop new medications that dramatically improve the removal of excess iron in patients diagnosed with blood diseases such as B-Thalassemia (Cooley's anemia) or sickle cell disease.

A new study led by Children's Hospital Oakland Research Institute senior scientist, Elizabeth Theil, Ph.D., is the first to suggest that a small protein or heptapeptide (seven amino acids wrapped into one unit) could be used to accelerate the removal of iron from ferritin.

Related Articles


The results of this study may help scientists develop new medications that dramatically improve the removal of excess iron in patients diagnosed with blood diseases such as B-Thalassemia (Cooley's anemia) or Sickle Cell Disease.

The study appears in this month's issue of the Journal of Biological Chemistry and was conducted by Dr. Theil and her co-authors Xiaofeng S. Liu, postdoctoral fellow at Children's Hospital Oakland Research Institute, Marvin J. Miller, Ph.D. and Leslie D. Patterson, a predoctoral student, both from the University of Notre Dame. The scientists knew that the ferritin protein cage had pores that could open and close. It was also known that chelators (a method to detoxify blood) removed iron faster when the pores were open.

"We wanted to prove a hypothesis that a small protein or peptide could bind to ferritin and could be used to regulate ferritin pores," said Dr. Theil. "Our hypothesis was correct. We proved that when a binding peptide of seven amino acids, a heptapeptide, is coupled with Desferal the rate of removal of iron from ferritin is eight times faster." Desferal is currently used to detoxify the blood of patients with iron overload and is a common therapeutic remedy.

Ferritin is a protein that concentrates iron in its inner core or 'cage'. It plays a critical role in understanding iron overload, which can lead to a variety of symptoms including chronic fatigue, weakness, joint pain and arthritis. If left untreated, iron overload can lead to serious problems, including diabetes, liver and heart disease.

The study's results are based on laboratory tests. The National Institutes of Health (NIH), the Cooley's Anemia Foundation and Children's Hospital & Research Center Oakland provided funding for this research.


Story Source:

The above story is based on materials provided by Children's Hospital & Research Center at Oakland. Note: Materials may be edited for content and length.


Cite This Page:

Children's Hospital & Research Center at Oakland. "Novel Way To Remove Iron From Ferritin Could Dramatically Improve Sickle Cell Treatment." ScienceDaily. ScienceDaily, 5 November 2007. <www.sciencedaily.com/releases/2007/11/071102161518.htm>.
Children's Hospital & Research Center at Oakland. (2007, November 5). Novel Way To Remove Iron From Ferritin Could Dramatically Improve Sickle Cell Treatment. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2007/11/071102161518.htm
Children's Hospital & Research Center at Oakland. "Novel Way To Remove Iron From Ferritin Could Dramatically Improve Sickle Cell Treatment." ScienceDaily. www.sciencedaily.com/releases/2007/11/071102161518.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins