Featured Research

from universities, journals, and other organizations

Seaweed Transformed Into Stem Cell Technology

Date:
November 11, 2007
Source:
Rensselaer Polytechnic Institute
Summary:
Engineers have transformed a polymer found in common brown seaweed into a device that can support the growth and release of stem cells at the sight of a bodily injury or at the source of a disease. The findings mark an important step in efforts to develop new medical therapies using stem cells.

The new stem cell scaffold. Circled in black: a microbead degrades to release neural stem cells. Circled in white: a separate microbead releases alginate lyase that will break down the outer layer of the scaffold, releasing stem cells into the body.
Credit: Rensselaer Polytechnic Institute/Randolph S. Ashton

Engineers at Rensselaer Polytechnic Institute have transformed a polymer found in common brown seaweed into a device that can support the growth and release of stem cells at the sight of a bodily injury or at the source of a disease.

Related Articles


The findings mark an important step in efforts to develop new medical therapies using stem cells.

“We have developed a scaffold for stem cell culture that can degrade in the body at a controlled rate,” said lead researcher Ravi Kane, professor of chemical and biological engineering. “With this level of control we can foster the growth of stem cells in the scaffold and direct how, when, and where we want them to be released in the body.”

Kane and his collaborators, which include the author of the paper and former Rensselaer graduate student Randolph Ashton, created the device from a material known as alginate. Alginate is a complex carbohydrate found naturally in brown seaweed. When mixed with calcium, alginate gels into a rigid, three-dimensional mesh.

The device could have wide-ranging potential for use in regenerative medicine, Kane explains. For example, the scaffolds could one day be used in the human body to release stem cells directly into injured tissue. Kane and his colleagues hope that the scaffold could eventually be used for medical therapies such as releasing healthy bone stem cells right at the site of a broken bone, or releasing neural stem cells in the brain where cells have been killed by diseases such as Alzheimer’s.

Kane and his team encapsulated healthy neural stem cells in the alginate mesh, producing a three-dimensional scaffold that degrades at a tunable, controlled rate. Once the scaffold is implanted in the body, the researchers use an enzyme called alginate lyase, which eats away at alginate, to release the stem cells. Alginate lyase is naturally produced in some marine animals and bacterial strains, but not in humans.

In order to control the degradation of the alginate scaffold, the researchers encapsulated varying amounts of alginate lyase into microscale beads, called microspheres. The microspheres containing the alginate lyase were then encapsulated into the larger alginate scaffolds along with the stem cells. As the microspheres degraded, the alginate lyase enzyme was released into the larger alginate scaffold and slowly began to eat away at its surface, releasing the healthy stem cells in a controlled fashion.

The microspheres also can be filled with more than just alginate lyase. “We can add drug molecules or proteins to the microspheres along with the alginate lyase that, when released into the larger alginate scaffold, could influence the fate of the encapsulated stem cells,” Kane said. “By adding these materials to the larger scaffold, we can direct the stem cells to become the type of mature, differentiated cell that we desire, such as a neuron. This will prove very valuable for applications of stem cells in regenerative medicine.”

The findings are detailed in the December 2007 edition of Biomaterials.  Kane and Ashton were assisted in their research by Professor David V. Schaffer of the University of California at Berkeley; Akhilesh Banerjee, a Rensselaer graduate student; and Supriya Punyani, a Rensselaer postdoctoral associate.

The research was funded with a grant from New York state.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute. Note: Materials may be edited for content and length.


Cite This Page:

Rensselaer Polytechnic Institute. "Seaweed Transformed Into Stem Cell Technology." ScienceDaily. ScienceDaily, 11 November 2007. <www.sciencedaily.com/releases/2007/11/071109191538.htm>.
Rensselaer Polytechnic Institute. (2007, November 11). Seaweed Transformed Into Stem Cell Technology. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2007/11/071109191538.htm
Rensselaer Polytechnic Institute. "Seaweed Transformed Into Stem Cell Technology." ScienceDaily. www.sciencedaily.com/releases/2007/11/071109191538.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) — Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins