Featured Research

from universities, journals, and other organizations

Remote-control Nanoparticles Deliver Drugs Directly Into Tumors

Date:
November 21, 2007
Source:
Massachusetts Institute of Technology
Summary:
Scientists have devised remotely controlled nanoparticles that, when pulsed with an electromagnetic field, release drugs to attack tumors. With the ability to see the clumped particles, researchers asked the next question: "Can we talk back to them?" The answer is yes, the team found.

Here, dark gray nanoparticles carry different drug payloads (one red, one green). A remotely generated 5-minute pulse of a low-energy electromagnetic field releases the green drug but not the red. A 5-minute pulse of a higher-energy electromagnetic field releases the red drug, which had been tethered using a DNA strand twice as long as the green tether, as measured in base pairs.
Credit: Image Courtesy Bhatia, MIT. Derfus, UCSD

MIT scientists have devised remotely controlled nanoparticles that, when pulsed with an electromagnetic field, release drugs to attack tumors. The innovation could lead to the improved diagnosis and targeted treatment of cancer.

Related Articles


In earlier work the team, led by Sangeeta Bhatia, M.D.,Ph.D., an associate professor in the Harvard-MIT Division of Health Sciences & Technology (HST) and in MIT's Department of Electrical Engineering and Computer Science, developed injectable multi-functional nanoparticles designed to flow through the bloodstream, home to tumors and clump together. Clumped particles help clinicians visualize tumors through magnetic resonance imaging (MRI).

With the ability to see the clumped particles, Bhatia's co-author in the current work, Geoff von Maltzahn, asked the next question: "Can we talk back to them?"

The answer is yes, the team found. The system that makes it possible consists of tiny particles (billionths of a meter in size) that are superparamagnetic, a property that causes them to give off heat when they are exposed to a magnetic field. Tethered to these particles are active molecules, such as therapeutic drugs.

Exposing the particles to a low-frequency electromagnetic field causes the particles to radiate heat that, in turn, melts the tethers and releases the drugs. The waves in this magnetic field have frequencies between 350 and 400 kilohertz--the same range as radio waves. These waves pass harmlessly through the body and heat only the nanoparticles. For comparison, microwaves, which will cook tissue, have frequencies measured in gigahertz, or about a million times more powerful.

The tethers in the system consist of strands of DNA, "a classical heat sensitive material," said von Maltzahn, a graduate student in HST. Two strands of DNA link together through hydrogen bonds that break when heated. In the presence of the magnetic field, heat generated by the nanoparticles breaks these, leaving one strand attached to the particle and allowing the other to float away with its cargo.

One advantage of a DNA tether is that its melting point is tunable. Longer strands and differently coded strands require different amounts of heat to break. This heat-sensitive tuneability makes it possible for a single particle to simultaneously carry many different types of cargo, each of which can be released at different times or in various combinations by applying different frequencies or durations of electromagnetic pulses.

To test the particles, the researchers implanted mice with a tumor-like gel saturated with nanoparticles. They placed the implanted mouse into the well of a cup-shaped electrical coil and activated the magnetic pulse. The results confirm that without the pulse, the tethers remain unbroken. With the pulse, the tethers break and release the drugs into the surrounding tissue.

The experiment is a proof of principal demonstrating a safe and effective means of tunable remote activation. However, work remains to be done before such therapies become viable in the clinic.

To heat the region, for example, a critical mass of injected particles must clump together inside the tumor. The team is still working to make intravenously injected particles clump effectively enough to achieve this critical mass.

"Our overall goal is to create multifunctional nanoparticles that home to a tumor, accumulate, and provide customizable remotely activated drug delivery right at the site of the disease," said Bhatia.

This research was reported in the Nov. 15 online issue of Advanced Materials.

Co-authors on the paper are Austin M. Derfus, a graduate student at the University of California at San Diego; Todd Harris, an HST graduate student; Erkki Ruoslahti and Tasmia Duza of The Burnham Institute in La Jolla, CA; and Kenneth S. Vecchio of the University of San Diego.

The research was supported by grants from the David and Lucile Packard Foundation, the National Cancer Institute of the National Institutes of Health. Dervis was supported by a G.R.E.A.T fellowship from the University of California Biotechnology Research and Educational Program.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Remote-control Nanoparticles Deliver Drugs Directly Into Tumors." ScienceDaily. ScienceDaily, 21 November 2007. <www.sciencedaily.com/releases/2007/11/071116155722.htm>.
Massachusetts Institute of Technology. (2007, November 21). Remote-control Nanoparticles Deliver Drugs Directly Into Tumors. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2007/11/071116155722.htm
Massachusetts Institute of Technology. "Remote-control Nanoparticles Deliver Drugs Directly Into Tumors." ScienceDaily. www.sciencedaily.com/releases/2007/11/071116155722.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com
3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

Buzz60 (Oct. 23, 2014) New York City officials announce a new technology initiative for the NYPD. Tim Minton reports smartphones and tablets will be given to more than 40,000 NYPD officers and detectives in an effort to change the way they perform their duties. Video provided by Buzz60
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins