Featured Research

from universities, journals, and other organizations

Thermoelectric Materials Are One Key To Energy Savings

Date:
November 27, 2007
Source:
Massachusetts Institute of Technology
Summary:
Breathing new life into an old idea, scientists are developing innovative materials for controlling temperatures that could lead to substantial energy savings by allowing more efficient car engines, photovoltaic cells and electronic devices.

Professor Mildred Dresselhaus, in the spectroscopy lab at MIT.
Credit: Photo / Donna Coveney

Breathing new life into an old idea, MIT Institute Professor Mildred S. Dresselhaus and co-workers are developing innovative materials for controlling temperatures that could lead to substantial energy savings by allowing more efficient car engines, photovoltaic cells and electronic devices.

Related Articles


Novel thermoelectric materials have already resulted in a new consumer product: a simple, efficient way of cooling car seats in hot climates. The devices, similar to the more-familiar car seat heaters, provide comfort directly to the individual rather than cooling the entire car, saving on air conditioning and energy costs.

The research is based on the principle of thermoelectric cooling and heating, which was first discovered in the early 19th century and was advanced into some practical applications in the 1960s by MIT professor (and former president) Paul Gray, among others.

Thermoelectric devices are based on the fact that when certain materials are heated, they generate a significant electrical voltage. Conversely, when a voltage is applied to them, they become hotter on one side, and colder on the other. The process works with a variety of materials, and especially well with semiconductors -- the materials from which computer chips are made. But it always had one big drawback: it is very inefficient.

The fundamental problem in creating efficient thermoelectric materials is that they need to be very good at conducting electricity, but not heat. That way, one end of the apparatus can get hot while the other remains cold, instead of the material quickly equalizing the temperature. In most materials, electrical and thermal conductivity go hand in hand. So researchers had to find ways of modifying materials to separate the two properties.

The key to making it more practical, Dresselhaus explains, was in creating engineered semiconductor materials in which tiny patterns have been created to alter the materials' behavior. This might include embedding nanoscale particles or wires in a matrix of another material. These nanoscale structures -- just a few billionths of a meter across -- interfere with the flow of heat, while allowing electricity to flow freely. "Making a nanostructure allows you to independently control these qualities," Dresselhaus says.

She and her MIT collaborators started working on these developments in the 1990s, and soon drew interest from the US Navy because of the potential for making quieter submarines (power generation and air conditioning are some of the noisiest functions on existing subs). "From that research, we came up with a lot of new materials that nobody had looked into," Dresselhaus says.

After some early work conducted with Ted Harman of MIT Lincoln Labs, Harman, Dresselhaus, and her student Lyndon Hicks published an experimental paper on the new materials in the mid 1990s. "People saw that paper and the field started," she says. "Now there are conferences devoted to it."

Her work in finding new thermoelectric materials, including a collaboration with MIT professor of Mechanical Engineering Gang Chen, invigorated the field, and now there are real applications like seat coolers in cars. Last year, a small company in California sold a million of the units worldwide.

Potential applications

The same principle can be used to design cooling systems that could be built right into microchips, reducing or eliminating the need for separate cooling systems and improving their efficiency.

The technology could also be used in cars to make the engines themselves more efficient. In conventional cars, about 80 percent of the fuel's energy is wasted as heat. Thermoelectric systems could perhaps be used to generate electricity directly from this wasted heat. Because the amount of fuel used for transportation is such a huge part of the world's energy use, even a small percentage improvement in efficiency can have a great impact, Dresselhaus explains. "It's very practical," she says, "and the car companies are getting interested."

The same materials might also play a role in improving the efficiency of photovoltaic cells, harnessing some of the sun's heat as well as its light to make electricity. The key will be finding materials that have the right properties but are not too expensive to produce.

Dresselhaus and colleagues are now applying nanotechnology and other cutting-edge technologies to the field. She'll describe her work toward better thermoelectric materials in an invited talk on Monday, Nov. 26, at the annual meeting of the Materials Research Society in Boston.

Dresselhaus and colleagues are continuing to probe the thermoelectric properties of a variety of semiconductor materials and nanostructures such as superlattices and quantum dots. Her research on thermoelectric materials is presently sponsored by NASA.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Thermoelectric Materials Are One Key To Energy Savings." ScienceDaily. ScienceDaily, 27 November 2007. <www.sciencedaily.com/releases/2007/11/071120195658.htm>.
Massachusetts Institute of Technology. (2007, November 27). Thermoelectric Materials Are One Key To Energy Savings. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2007/11/071120195658.htm
Massachusetts Institute of Technology. "Thermoelectric Materials Are One Key To Energy Savings." ScienceDaily. www.sciencedaily.com/releases/2007/11/071120195658.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) — A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) — The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) — The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins