Featured Research

from universities, journals, and other organizations

Blood-spinal Cord Barrier Compromised In Mice With ALS

Date:
November 27, 2007
Source:
Public Library of Science
Summary:
The blood-spinal cord barrier is functionally impaired in areas of motor neuron damage in mice modeling amyotrophic lateral sclerosis, report researchers. The barrier disruption was found in mice at both early and late stages of ALS, a progressive neurodegenerative disease affecting nerve cells in the brain and the spinal cord.

In the cervical spinal cord, EB was clearly detected within the blood vessels (red, arrowheads) in the control C57BL/6J mice at (A, B, C) 12–13 weeks of age or (D, E) in the lumen of vessels (brilliant green) at 19–20 weeks of age. In G93A mice, vascular leakage of EB (red, arrows) was detected (F, G) at early (13 weeks of age) disease symptoms and (H, I, J) at end-stage of disease (17–18 weeks of age) when more EB extravasation was seen. Arrowheads in F and I indicate vessel permeability. Scale bar in A–J is 25 m.
Credit: Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, et al, Image courtesy of PLoS One

The blood-spinal cord barrier is functionally impaired in areas of motor neuron damage in mice modeling amyotrophic lateral sclerosis (ALS), report researchers at the University of South Florida Center for Aging and Brain Repair. The barrier disruption was found in mice at both early and late stages of ALS, a progressive neurodegenerative disease affecting nerve cells in the brain and the spinal cord.

The blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) control the exchange of substances between the blood and the central nervous system. These barriers, formed by cells lining the blood vessels in the brain and the spinal cord, protect nerve cells by restricting entry of potentially harmful substances and cells of the immune system. Impairment in cellular machinery of the BBB and BSCB may lead to a barrier breakdown in many brain and spinal cord diseases or injuries.

"We detected vascular leakage in the cervical and lumbar spinal cord microvessels of ALS mice not only at the end-stage of disease but also in those with early disease symptoms," said lead author Svitlana Garbuzova-Davis, PhD, DSc, assistant professor in the USF Center for Aging and Brain Repair. "This may suggest that large molecules such as the antibody IgG and other blood proteins appear in the spinal cord due to vascular leakage, one possible mechanism accelerating motor neuron damage."

However, Dr. Garbuzova-Davis said, questions remain: "Is the BCSB altered before disease symptoms and other pathological processes begin in ALS, and does the protective barrier's breakdown play a primary role in the development of ALS?"

"If this finding translates to ALS patients, then it should yield important ways of developing new treatments that focus on drugs or cell therapies designed to repair the BSCB," said Paul R. Sanberg, PhD, DSc, co-author and director of the USF Center for Aging and Brain Repair.

The research builds upon another USF study published earlier this year in the journal Brain Research. Using electron microscopy to examine the capillary structure of the BBB and BSCB, the researchers demonstrated extracellular edema and physical damage to capillary endothelial cells, motor neurons, and astrocytes surrounding vessels in mice with early and late ALS symptoms.

In the most recent study, the researchers examined the functional competence of the BSCB in ALS mice. They intravenously injected a blue dye tracer into mice in different stages of ALS. Vascular leakage of the dye was found in mice with initial signs of ALS such a tremor, weight loss and reduced hindlimb extension and in mice with complete hindlimb paralysis at the terminal stage of ALS. Furthermore, the study found decreased expression of the glucose transporter Glut-1 and immunological markers CD146 for endothelial cells and GFAP for astrocytes, which may relate to vascular leakage.

The USF researchers plan to investigate whether the BSCB and BBB are altered in patients suffering from ALS.

Citation: Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, et al (2007) Evidence of Compromised Blood-Spinal Cord Barrier in Early and Late Symptomatic SOD1 Mice Modeling ALS. PLoS One 2(11): e1205. doi:10.1371/journal.pone.0001205


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "Blood-spinal Cord Barrier Compromised In Mice With ALS." ScienceDaily. ScienceDaily, 27 November 2007. <www.sciencedaily.com/releases/2007/11/071120201925.htm>.
Public Library of Science. (2007, November 27). Blood-spinal Cord Barrier Compromised In Mice With ALS. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2007/11/071120201925.htm
Public Library of Science. "Blood-spinal Cord Barrier Compromised In Mice With ALS." ScienceDaily. www.sciencedaily.com/releases/2007/11/071120201925.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins