Featured Research

from universities, journals, and other organizations

SARS: A Model Disease

Date:
November 25, 2007
Source:
BioMed Central
Summary:
A new model to predict the spread of emerging diseases has been developed. The model could give healthcare professionals advance warning of the path an emerging disease might take and so might improve emergency responses and control.

Map shows countries identified by the program and whether they were found to be infected. Solid red were correctly predicted as infected, striped red were correctly predicted as not infected, areas in green were not correctly predicted. Gray areas have no airport.
Credit: Vittoria Colizza, Alain Barrat, Marc Barthelemy and Alessandro Vespignani, Courtesy of BMC Medicine

A new model to predict the spread of emerging diseases has been developed by researchers in the US, Italy, and France. The model could give healthcare professionals advance warning of the path an emerging disease might take and so might improve emergency responses and control.

Related Articles


Severe acute respiratory syndrome (SARS) spread rapidly in 2002-2003, revealing just how vulnerable we might be to emerging diseases and how global transportation is critical to the spread of an epidemic.

Now, Vittoria Colizza and Alessandro Vespignani of Indiana University, Bloomington, USA and the Institute for Scientific Interchange Foundation, in Turin, Italy, and colleagues in France have developed a predictive model of the spread of emerging diseases based on actual travel and census data for more than three thousand urban areas in 220 countries.

The model provides predictions of how likely an outbreak will be in each region and how widespread it might become. The research highlights just how the accuracy in predicting the spreading pattern of an epidemic can be related to clearly identifiable routes by which the disease could spread.

In order to assess the predictive power of their model, the researchers turned to the historical records of the global spread of the SARS virus. They evaluated the initial conditions before the disease had spread widely, based on the data for the arrival of the first patient who left mainland China for Hong Kong, and for the resulting outbreak there.

They then simulated the likelihood that SARS would emerge in specific countries thereafter, as brought by infectious travelers. The simulated results fit very accurately with the actual pattern of the spread of SARS in 2002. Analysis of the results also identified possible paths of the virus' spread along the routes of commercial air travel, highlighting some preferred channels which may serve as epidemic pathways for the global spread of the disease.

"The presented computational approach shows that the integration of long-range mobility and demographic data provides epidemic models with a predictive power that can be consistently tested," the researchers explain. "This computational strategy can be therefore considered as a general tool in the analysis and forecast of the global spreading of emerging diseases."

Article: Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study Vittoria Colizza, Alain Barrat, Marc Barthelemy and Alessandro Vespignani ,  BMC Medicine (in press)


Story Source:

The above story is based on materials provided by BioMed Central. Note: Materials may be edited for content and length.


Cite This Page:

BioMed Central. "SARS: A Model Disease." ScienceDaily. ScienceDaily, 25 November 2007. <www.sciencedaily.com/releases/2007/11/071121085715.htm>.
BioMed Central. (2007, November 25). SARS: A Model Disease. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2007/11/071121085715.htm
BioMed Central. "SARS: A Model Disease." ScienceDaily. www.sciencedaily.com/releases/2007/11/071121085715.htm (accessed October 25, 2014).

Share This



More Computers & Math News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Microsoft Riding High On Strong Surface, Cloud Performance

Microsoft Riding High On Strong Surface, Cloud Performance

Newsy (Oct. 24, 2014) — Microsoft's Q3 earnings showed its tablets and cloud services are really hitting their stride. Video provided by Newsy
Powered by NewsLook.com
The Best Apps to Organize Your Life

The Best Apps to Organize Your Life

Buzz60 (Oct. 23, 2014) — Need help organizing your bills, schedules and other things? Ko Im (@konakafe) has the best apps to help you stay on top of it all! Video provided by Buzz60
Powered by NewsLook.com
Nike And Apple Team Up To Create Wearable ... Something

Nike And Apple Team Up To Create Wearable ... Something

Newsy (Oct. 23, 2014) — For those looking for wearable tech that's significantly less nerdy than Google Glass, Nike CEO Mark Parker says don't worry, It's on the way. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins