Featured Research

from universities, journals, and other organizations

Biomarkers For Inflammatory Disease

Date:
December 7, 2007
Source:
BioMed Central
Summary:
Gene-expression profiles might be used to identify prognostic biomarkers for Kawasaki disease, and help to unravel the underlying biology of the illness. The new findings also support the idea that gene-expression profiles might be used to generate biomarkers for other systemic inflammatory illnesses.

Gene-expression profiles might be used to identify prognostic biomarkers for Kawasaki disease, and help to unravel the underlying biology of the illness, research published this week in the online open access journal Genome Biology reveals. The new findings also support the idea that gene-expression profiles might be used to generate biomarkers for other systemic inflammatory illnesses.

Related Articles


Kawasaki disease, an acute, self-limited vasculitis, is the leading cause of acquired heart disease in children in developed countries, but its aetiologic and pathogenic mechanisms remain unclear.

A team of researchers led by David Relman, Stanford University, US, and Jane Burns, University of California at San Diego, US, characterized the gene expression patterns that occur in the blood cells of patients with this disease. They examined genome-wide transcript expression patterns in the blood of 77 children with Kawasaki disease. The acute phase of the illness was accompanied by an increase in gene transcripts associated with innate immune mechanisms and proinflammatory responses, and a decrease in transcripts associated with natural killer cells and CD8+ lymphocytes, which help clear infected or abnormal cells from the body.

They showed that the transcript patterns during the acute phase of the disease varied dramatically with day of illness, and that differences in expression patterns between patients were associated with clinical parameters that physicians have used to manage and make predictions about the course of the disease.

Patients who showed higher expression levels of specific transcripts (e.g., carcinoembryonic antigen-related cell adhesion molecule 1; CEACAM1) were less likely to respond to intravenous immunoglobulin, a highly effective but poorly understood treatment for preventing coronary artery aneurysms and reducing fever in Kawasaki disease.

This work contributes to our understanding of how the disease develops, how the treatment works, and how doctors might identify patients who are candidates for other therapies.

Article: Patrick O Brown, Jane C Burns and David A Relman. Gene-expression patterns reveal underlying biological processes in Kawasaki disease Stephen J Popper, Chisato Shimizu, Hiroko Shike, John T Kanegaye, Robert P Sundel, Jane W Newburger. Genome Biology (in press) (http://genomebiology.com/)


Story Source:

The above story is based on materials provided by BioMed Central. Note: Materials may be edited for content and length.


Cite This Page:

BioMed Central. "Biomarkers For Inflammatory Disease." ScienceDaily. ScienceDaily, 7 December 2007. <www.sciencedaily.com/releases/2007/12/071205190919.htm>.
BioMed Central. (2007, December 7). Biomarkers For Inflammatory Disease. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2007/12/071205190919.htm
BioMed Central. "Biomarkers For Inflammatory Disease." ScienceDaily. www.sciencedaily.com/releases/2007/12/071205190919.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com
AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

Newsy (Mar. 5, 2015) AbbVie announced Wednesday it will buy cancer drugmaker Pharmacyclics in a $21 billion deal. Video provided by Newsy
Powered by NewsLook.com
Toddlers Drinking Coffee? Why You Shouldn't Share Your Joe

Toddlers Drinking Coffee? Why You Shouldn't Share Your Joe

Newsy (Mar. 5, 2015) A survey of Boston mothers and toddlers found that 15 percent of two-year-olds drink coffee and 2.5 percent of 1-year-olds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins