Featured Research

from universities, journals, and other organizations

Measuring The Density Of Ultra-pure Water

Date:
December 24, 2007
Source:
Physikalisch-Technische Bundesanstalt
Summary:
For the description of ocean currents accurate measurements of the density of sea water are of great importance. For this purpose, measuring instruments are needed which reach a small uncertainty. To be able to calibrate these measuring instruments, ultra-pure water is required as a reference fluid -- the density of which can now be measured with the required accuracy over a large temperature range by means of a method which has been further developed at PTB.

View of the magnetic flotation equipment. The sinker lies on a holder whose weight is compensated by the buoyancy of a hollow sphere and of an adjusting weight.
Credit: Image courtesy of Physikalisch-Technische Bundesanstalt

For oceanography – and there in particular for the description of ocean currents – accurate measurements of the density of sea water are of great importance. For this purpose, measuring instruments are needed which reach an uncertainty of approx. 0.001 kg/m3 (relative 1 · 10–6). To be able to calibrate these measuring instruments, ultra-pure water is required as a reference fluid – the density of which can now be measured with the required accuracy over a large temperature range by means of the Magnetic Flotation Method which has been further developed at PTB.

Related Articles


Normally, the hydrostatic weighing method is used for measuring the density of liquids. Thereby, the density of the liquid is determined by means of Archimedes' principle from the buoyancy which is experienced by a sinker that plunges into the fluid. This method has several disadvantages which become apparent especially when water is to be measured. For this method, an open fluid tank is required into which the sinker – hanging on a wire – plunges.

At the point where the wire passes through the surface of the liquid into the water, a meniscus forms which, in the case of water, is extremely difficult to be reproduced and therefore contributes significantly to the measurement uncertainty. Along the wire, a temperature gradient occurs which, too, increases the measurement uncertainty. Due to the open system, the gas content of the water is difficult to control, but it alters the density.

In order to eliminate these sources of uncertainty, an apparatus has been developed in which the wire has been replaced by a magnetic coupling. In this magnetic flotation system, a small magnet is mounted at the holder of the sinker. By means of this magnet, and with the aid of a controllable magnetic field produced by an electromagnet, the sinker is kept in a fixed position. The current needed for this purpose is a measure for the buoyancy that is experienced by the sinker.

The fluid tank can almost be shut as the liquid is linked with the outside world only via a thin pipe by means of which the pressure can be regulated. In this way, it is possible to measure also with fully degassed water.

Thanks to the fact that the above-mentioned sources of uncertainty are avoided, measurements can be carried out with a repeatability standard deviation of approx. 2 · 10–7. The total measurement uncertainty of the water density measurement therefore reaches a value below 1 · 10–6.

The measurements carried out with this new apparatus could confirm to a large extent the values delivered by foreign colleagues. However, there are still discrepancies in the temperature range around 4 °C, which is of great importance especially in oceanography. Therefore, there is still a great need for further research in this field.


Story Source:

The above story is based on materials provided by Physikalisch-Technische Bundesanstalt. Note: Materials may be edited for content and length.


Cite This Page:

Physikalisch-Technische Bundesanstalt. "Measuring The Density Of Ultra-pure Water." ScienceDaily. ScienceDaily, 24 December 2007. <www.sciencedaily.com/releases/2007/12/071218101202.htm>.
Physikalisch-Technische Bundesanstalt. (2007, December 24). Measuring The Density Of Ultra-pure Water. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2007/12/071218101202.htm
Physikalisch-Technische Bundesanstalt. "Measuring The Density Of Ultra-pure Water." ScienceDaily. www.sciencedaily.com/releases/2007/12/071218101202.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) — Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) — A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins