Featured Research

from universities, journals, and other organizations

From Shooting Pain To Shiver, Role Of Gatekeeper Protein In Sensing Cold Confirmed

Date:
December 25, 2007
Source:
University of Southern California
Summary:
For the first time, neuroscientists have visualized cold fibers -- strands reaching from sensory neurons near the spinal cord to nerve endings in the skin tuned to sense different types of cold. The study confirms the important role of the protein TRMP8 in cold-sensing neurons.

By following the fluorescent cold fibers, the researchers added to the evidence that the protein TRPM8 is involved in several types of cold sensing.
Credit: Image courtesy of University of Southern California

For the first time, neuroscientists have visualized cold fibers -- strands reaching from sensory neurons near the spinal cord to nerve endings in the skin tuned to sense different types of cold.

Related Articles


Surprisingly, given the highly diversified sensory system and the range of sensations studied -- harmless cool, stinging cold, soothing coolness -- the fibers lead back to one place in the neuron: a protein known as TRPM8 that relays a cold signal up the spinal cord to the brain.

The idea of a cold fiber is simple. When the dentist chills a tooth with compressed air, the fiber carries a signal from nerve ending to sensory neuron. The neuron relays the signal to the brain, and the patient shivers.

In practice, said USC study leader David McKemy, "no one's actually seen a specific cold fiber."

McKemy's study solved that problem by genetically engineering mice in which neurons that express TRPM8 molecules also included a fluorescent tracer that lights up the fibers.

McKemy's study provides the first visualization of cold-sensing, TRPM8-expressing neurons. Previous studies had shown that mice lacking TRPM8 lose much of their cold sensitivity.

Humans and other mammals appear to share the same mechanism, McKemy said.

By following the fluorescent cold fibers, the researchers added to the evidence that TRPM8 is involved in several types of cold sensing. In teeth, the distinct nerve endings involved in the initial shooting pain and the subsequent dull ache both lead back to TRPM8, McKemy said.

Sensations such as the pleasant coolness of menthol, the sting of ice on the skin, the heightened cold sensitivity after an injury and the soothing cool of some pain relief lotions also involve TRPM8, he added.

Removing TRPM8 does not eliminate all sensitivity to all types of cold. Extreme cold not only activates TRPM8 but also burns the skin, turning on many other warning circuits.

"Cold is going to be activating these cool and cold cells that likely are the ones we're studying in this paper as well as activating these neurons that are probably responding to tissue damage," McKemy said.

"So your higher cognitive centers are processing a cool signal and a pain signal, and so we get cold pain.

"As with anything with biology, it's not as simple as you would think."

McKemy was the lead author of a landmark 2002 study, published in Nature, that first identified the cold-sensing role of TRPM8.

One larger goal of such research is to understand the molecular mechanisms of sensation, in the hope of developing better drugs for relief of chronic pain states, such as arthritis and inflammation.

"If we understand the basic nuts and bolts of the molecules and neurons and how they detect pain normally," McKemy said, "then perhaps we can figure out why we detect pain when we shouldn't."

The study appears in the Dec. 19 issue of the Journal of Neuroscience.

The other members of McKemy's group were first author Yoshio Takashima and co-authors Richard Daniels, Wendy Knowlton and James Teng, all undergraduate and graduate students at USC, and USC neuroscientist Emily Liman.

The National Institutes of Health funded the research.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Cite This Page:

University of Southern California. "From Shooting Pain To Shiver, Role Of Gatekeeper Protein In Sensing Cold Confirmed." ScienceDaily. ScienceDaily, 25 December 2007. <www.sciencedaily.com/releases/2007/12/071218192041.htm>.
University of Southern California. (2007, December 25). From Shooting Pain To Shiver, Role Of Gatekeeper Protein In Sensing Cold Confirmed. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2007/12/071218192041.htm
University of Southern California. "From Shooting Pain To Shiver, Role Of Gatekeeper Protein In Sensing Cold Confirmed." ScienceDaily. www.sciencedaily.com/releases/2007/12/071218192041.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins