Featured Research

from universities, journals, and other organizations

Firefly Genes In Mice Allow Testing Of New Therapy Against Lymphoma

Date:
December 28, 2007
Source:
Ohio State University
Summary:
Researchers here have figured out a way to use a firefly gene to let them see just how effective a new drug combination actually is against some forms of cancer and its serious complication. The new study looked at ATLL, adult T cell lymphoma and leukemia, a form of cancer where it is particularly hard to gauge the disease's progress, and where the patients' prognosis is generally poor. There is now no widely effective therapy available to treat this disease successfully.

The images above show mice at four and five weeks, respectively, after they had acute T-cell lymphoma and leukemia (ATLL) cells, containing the firefly gene, injected into their abdomens. The color spread shows the extent of the cancer's spread through the animal's body.
Credit: Image courtesy of Ohio State University

Researchers here have figured out a way to use a firefly gene to let them see just how effective a new drug combination actually is against some forms of cancer and its serious complication.

The new study looked at ATLL, adult T-cell lymphoma and leukemia, a form of cancer where it is particularly hard to gauge the disease's progress, and where the patients' prognosis is generally poor. There is now no widely effective therapy available to treat this disease successfully.

In doing so, the researchers developed what they hope will be the first animal model for the disease that includes a severe bone depletion called humoral hypercalcemia of malignancy (HHM), a condition that can affect four out of every five ATLL patients and shorten their lives.

“These ATLL tumors secrete proteins that also cause the bones in these patients to weaken and resorb,” explained Thomas Rosol, professor of veterinary biosciences and dean of the College of Veterinary Medicine at Ohio State University.

“When that happens, the amount of calcium in the blood can build up to toxic levels.” So killing the cancer cells in these patients is only half the battle, he says. “We have to stop the resorption of bone and the release of calcium that the cancer causes.”

Earlier tissue culture studies on a new anticancer drug, PS-341, showed promise in attacking the cancer cells but before now, an effective animal model wasn't available for researchers to use that included HHM's calcium buildup.

Rosol and his team turned to a combination of PS-341 and zoledronic acid, a form of bisphosphonate that is widely used now to combat the bone loss of osteoporosis and other diseases.

They would then test the two drugs, separately and combined, in a group of specialized mice that had been injected with ATLL tumor cells.

“We can inject these tumor cells into the abdomen of the mice and they will grow in the animals' lymph nodes,” explained Rosol, “but normally, you can't detect the extent of the animal's disease until the cancer is in its later stages.”

To solve this, Rosol's team took a novel approach: They took a gene responsible for a firefly's glow and genetically inserted it into these tumor cells. That gene produces the enzyme luciferase in the insects which, when combined with another compound, luciferin, causes the firefly's distinctive glow.

The mice then received these genetically modified tumor cells and the researchers injected luciferin into the animals. Cancer cells containing the luciferase would combine with the luciferin and glow in the dark, giving the team a clear picture of the extent of disease inside the animal.

“We put these mice inside a blackened chamber with a digital camera and then took their pictures. The only light present would be the light emitted by the cancer cells,” Rosol said.

“We just measured the light that we could see coming out of the animal – the more light, the more tumor growth; the less light, less tumor.”

He said that with the tumor cells emitting light, his team was able to gauge the volume of tumor cells in the animal's body. “It is amazingly sensitive and precise, letting us see to a level of only a few hundred cells,” he said. “That gives us a good method for monitoring the tumor cells.”

So when the researchers tested the effects of the two drugs, they found that the zoledronic acid halted the bone resorption, reducing the harmful calcium in the body, and that the anticancer drug PS-341 killed more than 95 percent of the ATLL cells.

“It was very effective against ATLL, eliminating almost all of the tumor cells,” Rosol said.

What they didn't expect was that in some mice treated only with the zoledronic acid and not with the PS-341 anticancer drug, the zoledronic acid reduced some of the cancer growth as well.

“We have no idea why some animals responded in this way while others didn't,” Rosol said, “but the next step may be to try to understand the processes involved in how the tumor cells cause the resorption of the bones and the release of calcium.

“Hopefully, we'll soon see this work tested in human clinical trials and that perhaps will lead to a treatment for this disease.”

The study is published in the online edition of the journal Cancer Research. The research was supported in part by the National Cancer Institute and the National Center for Research Resources. Working with Rosol on the project were Sherry Shu, Murali Nadella, Nanda Thudi and Jillian Werbeck, all doctoral students; research scientist Wessel Dirksen, statistician Soledad Fernandez, and Michael Lairmore, professor and chair of veterinary biosciences.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Firefly Genes In Mice Allow Testing Of New Therapy Against Lymphoma." ScienceDaily. ScienceDaily, 28 December 2007. <www.sciencedaily.com/releases/2007/12/071219134958.htm>.
Ohio State University. (2007, December 28). Firefly Genes In Mice Allow Testing Of New Therapy Against Lymphoma. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2007/12/071219134958.htm
Ohio State University. "Firefly Genes In Mice Allow Testing Of New Therapy Against Lymphoma." ScienceDaily. www.sciencedaily.com/releases/2007/12/071219134958.htm (accessed August 1, 2014).

Share This




More Health & Medicine News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Quintuplets Head Home

Texas Quintuplets Head Home

Reuters - US Online Video (Aug. 1, 2014) After four months in the hospital, the first quintuplets to be born at Baylor University Medical Center head home. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Patient Coming to U.S. for Treatment

Ebola Patient Coming to U.S. for Treatment

Reuters - US Online Video (Aug. 1, 2014) A U.S. aid worker infected with Ebola while working in West Africa will be treated in a high security ward at Emory University in Atlanta. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins