Featured Research

from universities, journals, and other organizations

Chicken Fat Converted Into Biodiesel Using Supercritical Methanol

Date:
January 3, 2008
Source:
University of Arkansas, Fayetteville
Summary:
Chemical engineering researchers have investigated supercritical methanol as a method of converting chicken fat into biodiesel fuel. The new study also successfully converted tall oil fatty acid, a major by-product of the wood-pulping process, into biodiesel at a yield of greater than 90 percent, significantly advancing efforts to develop commercially viable fuel out of plentiful, accessible and low-cost feedstocks and other agricultural by-products.

University of Arkansas graduate student Brent Schulte worked with this batch of tall oil fatty acid.
Credit: Image courtesy of University of Arkansas, Fayetteville

Chemical engineering researchers at the University of Arkansas have investigated supercritical methanol as a method of converting chicken fat into biodiesel fuel. The new study also successfully converted tall oil fatty acid, a major by-product of the wood-pulping process, into biodiesel at a yield of greater than 90 percent, significantly advancing efforts to develop commercially viable fuel out of plentiful, accessible and low-cost feedstocks and other agricultural by-products.

“Major oil companies are already examining biodiesel as an alternative to petroleum,” said R.E. “Buddy” Babcock, professor of chemical engineering. “With the current price of petroleum diesel and the results of this project and others, I think energy producers will think even more seriously about combining petroleum-based diesel with a biodiesel product made out of crude and inexpensive feedstocks.”

Under Babcock’s guidance, Brent Schulte, a chemical-engineering graduate student in the university’s College of Engineering, subjected low-grade chicken fat, donated by Tyson Foods, and tall oil fatty acids, provided by Georgia Pacific, to a chemical process known as supercritical methanol treatment. Supercritical methanol treatment dissolves and causes a reaction between components of a product – in this case, chicken fat and tall oil – by subjecting the product to high temperature and pressure.

Substances become “supercritical” when they are heated and pressurized to a critical point, the highest temperature and pressure at which the substance can exist in equilibrium as a vapor and liquid. The simple, one-step process does not require a catalyst.

Schulte treated chicken fat and tall oil with supercritical methanol and produced biodiesel yields in excess of 89 and 94 percent, respectively. With chicken fat, Schulte reached maximum yield at 325 degrees Celsius and a 40-to-1 molar ratio, which refers to the amount of methanol applied. The process also produced a respectable yield of 80 percent at 300 degrees Celsius and the same amount of methanol. At 275 degrees Celsius and the same amount of methanol, the process was ineffective. Ideal results using tall oil fatty acid were achieved at 325 degrees Celsius and a 10-to-1 molar ratio. At 300 degrees Celsius and the same amount of methanol, the conversion produced a yield of almost 80 percent. Again, at 275 degrees Celsius, the process was ineffective.

Previous efforts, including a study two years ago by another one of Babcock’s graduate students, to make biodiesel out of low-cost feedstocks – as opposed to refined oils – have used one of two conventional methods, base-catalyzed or acid-catalyzed esterification. Although successful at producing biodiesel, these conventional methods struggle to be economically feasible due to long reaction times, excessive amounts of methanol required and/or undesired production of soaps during processing.

“The supercritical method hit the free fatty-acid problem head on,” Babcock said. “Because it dissolves the feed material and eliminates the need for the base catalyst, we now do not have the problems with soap formation and loss of yield. The supercritical method actually prefers free fatty acid feedstocks.”

Biodiesel is a nonpetroleum-based alternative diesel fuel that consists of alkyl esters derived from renewable feedstocks such as plant oils or animal fats. The fuel is made by converting these oils and fats into what are known as fatty acid alkyl esters. The conventional processes require the oils or fats be heated and mixed with a combination of methanol and sodium hydroxide as a catalyst. The conversion process is called transesterification.

Most biodiesel is produced from refined vegetable oils, such as soybean and rapeseed oil, which are expensive; they generally account for 60 to 80 percent of the total cost of biodiesel. Due to these high feedstock prices, biodiesel production struggles to be economically feasible. Currently, as Babcock alluded, biodiesel cannot compete with petroleum diesel unless the per-gallon price of diesel remains higher than $3. For these reasons, researchers recently have focused efforts on less refined and less-expensive feedstocks as a more viable competitor to conventional diesel.

Biodiesel has many benefits. In addition to reducing U.S. dependence on foreign oil, it is better for the environment than purely petroleum-based products. As a renewable, biodegradable and thus carbon-neutral material, biodiesel does not contribute to greenhouse gases. In fact, it decreases sulfur and particulate-matter emissions. It also provides lubrication for better-functioning mechanical parts and has excellent detergent properties.

“Biodiesel provides an effective, sustainable-use fuel with many desirable properties,” Schulte said. “In addition to being a renewable, biodegradable and carbon-neutral fuel source, it can be formed in a matter of months from feedstocks produced locally, which promotes a more sustainable energy infrastructure. It also decreases dependence on foreign oil and creates new labor and market opportunities for domestic crops.”


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Cite This Page:

University of Arkansas, Fayetteville. "Chicken Fat Converted Into Biodiesel Using Supercritical Methanol." ScienceDaily. ScienceDaily, 3 January 2008. <www.sciencedaily.com/releases/2007/12/071220230827.htm>.
University of Arkansas, Fayetteville. (2008, January 3). Chicken Fat Converted Into Biodiesel Using Supercritical Methanol. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2007/12/071220230827.htm
University of Arkansas, Fayetteville. "Chicken Fat Converted Into Biodiesel Using Supercritical Methanol." ScienceDaily. www.sciencedaily.com/releases/2007/12/071220230827.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins