Featured Research

from universities, journals, and other organizations

Researcher Seeks Clues To How Tuberculosis Infects Cells

Date:
December 26, 2007
Source:
Cornell University
Summary:
Cornell researchers are using advanced genetic techniques to better understand the relationship between the bacteria that cause tuberculosis and the human immune system defense cells that engulf them.

Dark ovals reveal tuberculosis bacteria encapsulated in vacuoles inside a macrophage cell.
Credit: Image courtesy of Cornell University

Cornell researchers are using advanced genetic techniques to better understand the relationship between the bacteria that cause tuberculosis and the human immune system defense cells that engulf them.

The researchers have discovered that unlike many bacterial pathogens, Mycobacterium tuberculosis does not react when immune system cells called macrophages initially make contact; but the bacterium's genes become activated minutes after the pathogen is enveloped by a macrophage and contained in one of its membrane-bound compartments called vacuoles.

David Russell, professor of molecular microbiology at Cornell's College of Veterinary Medicine, and colleagues reported in a November issue of the journal Cell Host and Microbe, that increased acidity inside the vacuoles containing the bacteria serves as the trigger for M. tuberculosis genes to express proteins.

The study also compared the responses of M. tuberculosis to a live bacterial vaccine against tuberculosis known as Bacillus Calmette-Guerin (BCG). It found that the two bacteria may each respond differently to the same stimuli and that BCG appears less capable of protecting itself once inside a macrophage. The findings are consistent with the reduced virulence of BCG, which is key to its safety as a vaccine.

The study is a small part of a larger plan to understand the processes that allow the bacteria to survive within macrophages and then to use that knowledge to develop more effective drugs to fight tuberculosis, which currently kills 2 million people worldwide each year. Existing drugs require six to nine months to treat the active disease that invades and replicates within the lungs.

"What we propose is the exploitation of the data obtained from these basic science studies to develop a comprehensive program of drug development that targets bacterial processes critical to survival inside the human host," said Russell.

Russell's lab used gene chips, or microarrays, to identify genes activated under specific environmental conditions. This allowed them to generate real-time readouts of bacterial health and their response to stress. The researchers have also created real-time readouts that measure conditions within the tuberculosis-containing vacuole at any time during the immune system's process.

"Our goal is to develop these bacterial fitness readouts to screen small molecule libraries for compounds that will kill M. tuberculosis inside the macrophage," said Russell. "Unfortunately, Cornell does not have either the instrumentation or the chemical libraries necessary to do this work, so I am trying different, private funding agencies to get the support to purchase equipment and libraries."

Kyle Rohde, a research associate in Russell's lab, is the paper's lead author. The study was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Researcher Seeks Clues To How Tuberculosis Infects Cells." ScienceDaily. ScienceDaily, 26 December 2007. <www.sciencedaily.com/releases/2007/12/071224124805.htm>.
Cornell University. (2007, December 26). Researcher Seeks Clues To How Tuberculosis Infects Cells. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2007/12/071224124805.htm
Cornell University. "Researcher Seeks Clues To How Tuberculosis Infects Cells." ScienceDaily. www.sciencedaily.com/releases/2007/12/071224124805.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins