Featured Research

from universities, journals, and other organizations

Slow Motion Melting Ice Crystals In A Computer Animation

Date:
January 10, 2008
Source:
Wiley-Blackwell
Summary:
An animated movie shows an ordered structure dissolving little by little into a disordered mess after a light pulse: Swedish researchers have used a computer to simulate ice melting after it is heated with a short light pulse.

The above still image from an animated movie shows an ordered structure dissolving little by little into a disordered mess after a light pulse.
Credit: Image courtesy of Uppsala University

An animated movie shows an ordered structure dissolving little by little into a disordered mess after a light pulse: Swedish researchers from the University of Uppsala have used a computer to simulate ice melting after it is heated with a short light pulse. The absorbed energy first causes the OH bonds to oscillate. After a few picoseconds (10-12 s) the energy is converted into rotational and translational energy, which causes the crystal to melt, though crystalline domains remain visible for quite a while.

The common form of ice crystals is known as hexagonal ice. In this form the oxygen atoms of the water molecules are arranged in a tetrahedral lattice. Each water molecule is bound to four neighboring molecules by means of bridging hydrogen bonds, leading to an average of two bridges per molecule. In water, there are, on average, only 1.75 bridging hydrogen bonds per molecule.

What happens in the process of melting" Carl Caleman and David van der Spoel have now successfully used a computer to simulate "snapshots" of melting ice crystals. These molecular dynamics simulations are ideal for gaining a better understanding of processes like melting or freezing because they make it possible to simultaneously describe both the structure and the dynamics of a system with atomic resolution and with a time resolution in the femtosecond (10-15 s) range.

The simulation demonstrated that the energy of the laser pulse initially causes the OH bonds in the water molecules to vibrate. Immediately after the pulse, the vibrational energy reaches a maximum. After about a picosecond, most of the vibrational energy has been transformed into rotational energy. The molecules begin to spin out of their positions within the crystal, breaking the bridging hydrogen bonds.

After about 3 to 6 picoseconds, the rotations diminish in favor of translational motion. The molecules are now able to move freely and the crystal structure collapses. This process starts out locally, at individual locations within the crystal. Once the symmetry of the structure is broken, the likelihood of melting processes occurring in the area immediately surrounding the crystal defect rises significantly. The melting process thus spreads out from this point little by little. At other locations the ice can maintain its crystalline structure a little longer.

A movie is available online at http://xray.bmc.uu.se/molbiophys/images/Movies/melt.mpg

Journal reference: David van der Spoel, Uppsala University (Sweden). Picosecond Melting of Ice by an Infrared Laser Pulse: A Simulation Study. Angewandte Chemie International Edition, doi: 10.1002/anie.200703987


Story Source:

The above story is based on materials provided by Wiley-Blackwell. Note: Materials may be edited for content and length.


Cite This Page:

Wiley-Blackwell. "Slow Motion Melting Ice Crystals In A Computer Animation." ScienceDaily. ScienceDaily, 10 January 2008. <www.sciencedaily.com/releases/2008/01/080107101005.htm>.
Wiley-Blackwell. (2008, January 10). Slow Motion Melting Ice Crystals In A Computer Animation. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2008/01/080107101005.htm
Wiley-Blackwell. "Slow Motion Melting Ice Crystals In A Computer Animation." ScienceDaily. www.sciencedaily.com/releases/2008/01/080107101005.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins