Featured Research

from universities, journals, and other organizations

New Genetic Mutation That Halts The Development Of Lupus Discovered

Date:
January 21, 2008
Source:
Scripps Research Institute
Summary:
Scientists have uncovered a specific genetic mutation that suppresses the development of systemic lupus, an incurable autoimmune disease that causes the body to attack itself. The research suggests potential targets for future drug development.

The lupus-suppressing action is the result of what is known as a nonsense mutation of the Coronin-1A gene (Coro1a) required for the development of the disease. A nonsense mutation causes the gene to produce proteins that no longer function. The Coronin-1A gene is a multifunctional regulator of the cytoskeleton, a network of protein fibers or filaments in the cell that helps maintain cell shape and is the key contributor to cell movement.

Related Articles


"The mutation reduced symptoms of the disease by interfering with the development and activation of T cells and other immune responses," said Dwight Kono, an associate professor at The Scripps Research Institute. "These findings solidify the critical role of Coronin-1A in normal immune responses, and identify it as a potential therapeutic target for lupus."

Two Sides of Lupus Genetics

Systemic lupus erythematosus is a serious autoimmune disease that affects approximately 1.5 million Americans. It is influenced by genetic, environmental, and hormonal factors, although genetic predisposition appears to be the single greatest contributor to its onset.

There has been considerable interest in defining the genetics of systemic lupus erythematosus in recent years, not only for gaining a better understanding of the fundamental causes of the disease but also for the development of potential therapies.

"We were searching for a lupus susceptibility gene," Kono said. "After mapping and cloning the Coronin-1A gene, we discovered this spontaneous mutation in a single strain of mice-those that don't get severe or systemic lupus-like disease. More than likely, the mutation had existed undetected in our mouse colony for years.

"We ended up cloning a disease-resistance gene when we were thinking about doing the opposite," he continued. "Suppressive genes may, in fact, play an important role in lupus susceptibility."

The study suggests genetic-mapping studies need to adequately distinguish between predisposing or suppressive alleles or alternate gene forms, and that other lupus-related loci might also be associated with suppressive alleles. In addition to traditional predisposing genes, disease-suppressing genes and spontaneous mutations, as in the case for CoroLmb3, are likely to be important contributors to an entire repertoire of genetic variations that could help alter the onset and severity of the disease in lupus patients.

"Obviously, these types of variations will further complicate the identification of susceptibility genes," Kono added. "However, as in the case of disease-suppressing genes such as we found in our study, their identification can provide important clues to pathogenesis and possibly therapy."

Pointing to New Possibilities

The Scripps Research scientists found the mutation on a single genetic locus-the position of a gene on a chromosome-called Lmb3 that plays a major role in modulating autoimmunity in transgenic mice. The cloned version of the Lmb3 mutation resulted in developmental and functional alterations in T cells, including reduced migration, survival, and activation. The study also showed that the Lmb3 autoimmune-suppressing phenotype could be transmitted only through Coro1aLmb3 T cells.

"The fact that its action appears to be somewhat specific for T cells is unusual," Kono said. "Because we were able to show that blocking CoroLmb3 has specific effects, this work suggests other cytoskeleton proteins might prove to be good targets. This opens up an area that hasn't really been considered, and gives more impetus to study these genes for autoimmunity."

Because the actin cytoskeleton is essential for many crucial cellular functions and involves complex regulatory mechanisms in specific cell types, these new findings highlight the importance of actin regulation in lupus pathogenesis. They also suggest that alteration of an actin-regulatory protein can have limited but important effects on specific immune system functions.

"There may be quite a few regulatory proteins that can be used as targets," Kono said. "We really don't know right now. What we would like to do is identify all the genes that block autoimmunity one way or another. Finding these suppressing genes may be important in identifying future therapeutic targets."

The new study was published in the January 18 edition (Volume 28, Issue 1) of the journal Immunity.

Other authors of the study, The Lupus-Related Lmb3 Locus Contains a Disease-Suppressing Coronin-1A Gene Mutation, are Gabriel Sternik, Nicholas R. J. Gascoigne, Christine A. Louis-Dit-Sully, Brian R. Lawson, and Argyrios N. Theofilopoulos of The Scripps Research Institute; M. Katarina Haraldsson of The Scripps Research Institute and Umeε University, Sweden; and Marie-Laure Santiago-Raber University of Geneva, Switzerland.

The study was supported by National Institutes of Health.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Research Institute. "New Genetic Mutation That Halts The Development Of Lupus Discovered." ScienceDaily. ScienceDaily, 21 January 2008. <www.sciencedaily.com/releases/2008/01/080117134233.htm>.
Scripps Research Institute. (2008, January 21). New Genetic Mutation That Halts The Development Of Lupus Discovered. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/01/080117134233.htm
Scripps Research Institute. "New Genetic Mutation That Halts The Development Of Lupus Discovered." ScienceDaily. www.sciencedaily.com/releases/2008/01/080117134233.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins