Featured Research

from universities, journals, and other organizations

Altering Brain's Lipid Metabolism Reduces Alzheimer's Plaques In Mice

Date:
January 22, 2008
Source:
Washington University School of Medicine
Summary:
Increasing levels of a protein that helps the brain use cholesterol may slow the development of Alzheimer's disease changes in the brain, according to researchers studying a mouse model of the disease. The study highlights a new possibility for potential Alzheimer's treatment: altering the brain's use of lipids, a class of fat-soluble compounds that includes cholesterol.

Increasing levels of a protein that helps the brain use cholesterol may slow the development of Alzheimer's disease changes in the brain, according to researchers studying a mouse model of the disease at Washington University School of Medicine in St. Louis.

Related Articles


Elevated levels of the protein ABCA1 sharply reduced buildup of brain plaques that are a hallmark of Alzheimer's disease, according to senior author David M. Holtzman, M.D., the Andrew and Gretchen Jones Professor and chair of the Department of Neurology at the School of Medicine and neurologist-in-chief at Barnes-Jewish Hospital.

The study highlights a new possibility for potential Alzheimer's treatment: altering the brain's use of lipids, a class of fat-soluble compounds that includes cholesterol.

"It's becoming clear that ABCA1 may be a good drug target for Alzheimer's therapies," Holtzman says. "There are known drugs that can increase ABCA1 levels, and with some further development of this or similar classes of drugs and additional insights into how ABCA1 slows down plaque deposition, there may be a way to create a new approach to Alzheimer's treatment."

Discovered in 2001, ABCA1 is a naturally occurring enzyme already under study for its potential to treat heart disease. Lipids like cholesterol aren't soluble, so to be transported through the bloodstream and into and out of cells and organs, they have to be associated with molecules known as apolipoproteins. ABCA1 facilitates this process, which is known as lipidation.

In the circulatory system, ABCA1 lipidates HDL with cholesterol to form fully functioning HDL, the "good" cholesterol thought to decrease risk of heart disease. Cardiovascular researchers are testing drugs that increase ABCA1 levels, hoping eventually to use them to prevent or alleviate atherosclerosis.

Holtzman was intrigued by the connection between ABCA1 and lipidation because a primary risk factor for Alzheimer's disease is an apolipoprotein known as apoE. Different genetic forms of apoE are linked to significant changes in an individual's risk of developing late-onset Alzheimer's disease.

In earlier research, Holtzman's lab revealed that ABCA1 also lipidates good cholesterol in the brain. When they utilized mice lacking the gene for ABCA1 and bred them to mouse model of Alzheimer's disease, the animals developed a much great number of the brain plaques that are characteristic of the disease.

For the new experiment, Holtzman laboratory members Suzanne Wahrle, an M.D./Ph.D. student, and Hong Jiang, a senior research technician, created a line of mice genetically altered to make unusually high levels of ABCA1 in the brain. When they crossbred that line with their Alzheimer's disease mouse model, they found mice with high ABCA1 levels built up plaques in their brains much more slowly and to a much lesser extent than those with normal ABCA1 levels.

The work showed that ABCA1 is facilitating the lipidation of HDL and apoE. Holtzman theorizes that this allows apoE to better scavenge amyloid beta, the main ingredient of plaques, from the brain in a way that decreases the chances that plaques will begin to form. An earlier experiment by other scientists showed that lipidated apoE binds more tightly to soluble amyloid beta than non-lipidated apoE. But further research is needed to prove this theory.

A class of drugs is already available that increases ABCA1 levels: LXR (liver X receptor) agonists. However, Holtzman notes, these drugs need to be fine-tuned to avoid an undesirable side effect that increases fat buildup in the liver.

Holtzman is conducting additional studies to clarify the details of the relationship between ABCA1, apoE and amyloid beta.

Journal reference: Wahrle SE, Jiang H, Parsadanian M, Kim J, Li A, Knoten A, Jain S, Hirsch-Reinshagen V, Wellington CL, Bales KR, Paul SM, Holtzman DM. Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer's disease. Journal of Clinical Investigation, February 2008 (online January 17)


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School of Medicine. "Altering Brain's Lipid Metabolism Reduces Alzheimer's Plaques In Mice." ScienceDaily. ScienceDaily, 22 January 2008. <www.sciencedaily.com/releases/2008/01/080118093354.htm>.
Washington University School of Medicine. (2008, January 22). Altering Brain's Lipid Metabolism Reduces Alzheimer's Plaques In Mice. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2008/01/080118093354.htm
Washington University School of Medicine. "Altering Brain's Lipid Metabolism Reduces Alzheimer's Plaques In Mice." ScienceDaily. www.sciencedaily.com/releases/2008/01/080118093354.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins