Featured Research

from universities, journals, and other organizations

Nanotubes Go With The Flow

Date:
January 25, 2008
Source:
Wiley-Blackwell
Summary:
Scientists have developed a technique for aligning nanotubes over large areas based on the flow of a nanotube-containing solution through nanochannels. This technique is especially attractive because of its simplicity; no external stimuli such as the application of an electric field or syringe pumping are required to align the nanotubes.

Carbon nanotubes are attractive candidates for use as the active elements in the next generation of electronic devices. However, it has proven incredibly difficult to align nanotubes within device architectures. Most of the approaches for lining up carbon nanotubes reported until now are only applicable to discrete devices and are not readily scalable to the levels required for the mass production of nanotube-based chips.

Now, this seemingly intractable problem has been overcome by a collaborative team of researchers from Seoul National University and Sungkyunkwan in South Korea. Kahp Suh and his colleagues have developed a technique for aligning nanotubes over large areas based on the flow of a nanotube-containing solution through nanochannels. This technique is especially attractive because of its simplicity; no external stimuli such as the application of an electric field or syringe pumping are required to align the nanotubes.

This novel approach for aligning carbon nanotubes is based on the simple flow of a nanotube solution through a nanochannel fabricated from a charged polymeric mold. The nanotubes are ordered within the channels by the influence of the capillary force existing within the confines of the channel. When the channels are of the correct geometry, aqueous solutions containing nanotubes enter from both ends, and upon evaporation leave behind dense and highly oriented arrays of nanotubes. Suh cautions that the mechanical properties and surface chemistry of the polymeric mold used for making the nanochannels are of paramount importance.

“The stiffness of the polymer has to be just right”, says Suh, “it has to be rigid enough to keep the nanochannels from collapsing but flexible enough to bond well with the substrate over a large area”. Good adhesion is required between the nanochannel and the substrate to prevent the polymer nanochannels from coming unstuck upon the introduction of the aqueous nanotube solution. The researchers have found that polyethylene glycol diacrylate has the right combination of properties for use as the polymer mold. It is negatively charged and facilitates conformal contact with the substrate. Moreover, it is hydrophilic and thus the nanotube solution is able to enter and flow through the channels without need for additional pumping.

Suh further added that this approach represents a promising advance for the integration of nanotubes in microscale devices. The use of fluidics to bring typically unruly bundles of nanotubes into line may help to solve prevailing bottlenecks for scaling up the production of nanotube devices.

Journal reference: Capillarity-Driven Fluidic Alignment of Single-Walled Carbon Nanotubes in Reversibly Bonded Nanochannels. Small 2008, 4, 92–95. doi: 10.1002/smll.200700300


Story Source:

The above story is based on materials provided by Wiley-Blackwell. Note: Materials may be edited for content and length.


Cite This Page:

Wiley-Blackwell. "Nanotubes Go With The Flow." ScienceDaily. ScienceDaily, 25 January 2008. <www.sciencedaily.com/releases/2008/01/080123090459.htm>.
Wiley-Blackwell. (2008, January 25). Nanotubes Go With The Flow. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2008/01/080123090459.htm
Wiley-Blackwell. "Nanotubes Go With The Flow." ScienceDaily. www.sciencedaily.com/releases/2008/01/080123090459.htm (accessed August 29, 2014).

Share This




More Matter & Energy News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins