Featured Research

from universities, journals, and other organizations

Biologists Use Computers To Study Bacterial Cell Division

Date:
January 30, 2008
Source:
Virginia Tech
Summary:
A group of computational biologists have created a mathematical model of the process that regulates cell division in a common bacterium, confirming hypotheses, providing new insights, identifying gaps in what is understood so far, and demonstrating the role of computation in biology.

A group of computational biologists at Virginia Tech have created a mathematical model of the process that regulates cell division in a common bacterium, confirming hypotheses, providing new insights, identifying gaps in what is understood so far, and demonstrating the role of computation in biology.

Related Articles


The research, published in the January issue of PLoS Computational Biology, looks at the molecular machinery that governs replication of DNA and cell division in Caulobacter crescentus, an easily studied bacterium that is closely related to the bacteria that fix nitrogen in legumes and to the bacteria that cause brucellosis in cattle and Rocky Mountain spotted fever in humans.

"All share the same characteristic of asymmetric division; the daughter cells are different than the mother cell in some fashion," explains John Tyson, University Distinguished Professor of Biology at Virginia Tech and corresponding author of the PLoS article. "In C. crescentus, the mother cell attaches to a rock by a sticky stalk. If there is good eating, she divides and creates a daughter that can swim away. The stalked cell remains attached to the rock and the daughter--with a flagellum instead of a stalk--swims away, so that it does not compete with mama. After about 35 to 40 minutes, the daughter loses the flagellum, grows a stalk, and settles down to become a mother."

The Virginia Tech researchers are interested in the molecular machinery that governs replication of DNA and division of a cell into two different cell types. "A lot is known about genes that control this process. Much of the work was done in Lucy Shapiro's laboratory at Stanford," said Tyson.

"The mechanism is very complicated, involving dozens of genes and even more proteins. From experimental observations it is possible to construct a hypothetical 'wiring diagram' of how these genes and proteins interact."

But it is difficult to predict how cells will control their replication-division cycles from such a complicated hypothesis, he said. "Our goal is to convert the wiring diagram into mathematical equations that can be solved on a computer so that we can say with more confidence how the mechanism will govern cell growth, division, and differentiation."

The team's goal is also to demonstrate the role of computation in understanding biology. "We want to convert intuitive expectations into mathematical equations that can be tested more rigorously," Tyson said.

For example, models can be used to make testable predictions. A basic experiment is to create a mutant bacterium by knocking out a gene -- thus learning the role of the gene. This mutation can be simulated in the mathematical model to confirm the role of the gene in the wiring diagram. The mathematical model must agree with the observed behavior of all known mutants, and it can be used to compute the expected properties of mutants never before created in a lab, Tyson said. "If the prediction is confirmed by experiment, it promotes more confidence in the model. And sometimes you find that the model cannot reproduce the behavior of mutant bacteria, which suggests that the wiring diagram is incomplete and helps focus research on an improved understanding of the cell-division process."

In fact, there are known Caulobacter mutants that are not explained by the model described in the PLoS article, entitled "A Quantitative Study of the Division Cycle of Caulobacter crescentus Stalked Cells." "We knew our model was incomplete," Tyson said, "but we decided to publish at this stage because the model is good enough to illustrate the advantages of a computational approach. We have a new version of the model that fixes the problem and that accounts for the differentiation and development of swarmer cells as well as stalked cells."

So stay tuned.

"Computational biology is not much different from experimental biology -- you learn, publish, and keep working. There is always room for improvements. We would like to extend the model to the nitrogen-fixing and disease-causing cousins of C. crescentus," Tyson said.

Co-author Bruno Sobral, professor and executive and scientific director of the Virginia Bioinformatics Institute, remarked: "C. crescentus is a member of the alpha-proteobacteria, a group of diverse organisms whose members have successfully adopted different lifestyle and energy-yielding strategies in the course of evolution. It will be interesting to see if the molecular mechanism described in this study for control of the cell division cycle in C. crescentus is applicable to other species of this biologically important group of bacterial organisms."

Other authors of the PLoS article are Shenghua Li, a graduate student in Tyson's group; and Paul Brazhnik, research associate professor in biological sciences. The creation of a mathematical model of cell cycle regulation in C. crescentus is Li's Ph.D. research.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Biologists Use Computers To Study Bacterial Cell Division." ScienceDaily. ScienceDaily, 30 January 2008. <www.sciencedaily.com/releases/2008/01/080124233635.htm>.
Virginia Tech. (2008, January 30). Biologists Use Computers To Study Bacterial Cell Division. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2008/01/080124233635.htm
Virginia Tech. "Biologists Use Computers To Study Bacterial Cell Division." ScienceDaily. www.sciencedaily.com/releases/2008/01/080124233635.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins