Featured Research

from universities, journals, and other organizations

Targeting Astrocytes Slows Disease Progression In Lou Gehrig's Disease, Study Shows

Date:
February 4, 2008
Source:
University of California - San Diego
Summary:
In what the researchers say could be promising news in the quest to find a therapy to slow the progression of amyotrophic lateral sclerosis, or Lou Gehrig's disease, scientists have shown that targeting neuronal support cells called astrocytes sharply slows disease progression in mice.

In what the researchers say could be promising news in the quest to find a therapy to slow the progression of amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, scientists at the University of California, San Diego (UCSD) School of Medicine have shown that targeting neuronal support cells called astrocytes sharply slows disease progression in mice.

Related Articles


The study, conducted in the laboratory of Don Cleveland, Ph.D., UCSD Professor of Medicine, Neurosciences and Cellular and Molecular Medicine and member of the Ludwig Institute for Cancer Research, will appear in the advance online publication on Nature Neuroscience's website on February 3rd.

"Mutant genes that cause ALS are expressed widely, not just in the motor neurons," Cleveland explained. "Targeting the partner cells like astrocytes, which live in a synergistic environment with the neuron cells, helps stop the 'cascade of damage.' Therapeutically, this is the big news."

ALS is a progressive disease that attacks the motor neurons, long and complex nerve cells that reach from the brain to the spinal cord and from the spinal cord to the muscles throughout the body, which act to control voluntary movement. Degeneration of the motor neurons in ALS leads to progressive loss of muscle control, paralysis and untimely death. Estimated to affect some 30,000 Americans, most people are diagnosed with ALS between the ages of 45 and 65. Typically, ALS patients live only one to five years after initial diagnosis.

In findings published in Science in June 2006, Cleveland and his colleagues showed that in early stages of inherited ALS, small immune cells called microglia are damaged by mutations in the SOD1 protein, and that these immune cells then act to significantly accelerate the degeneration of the motor neurons. The new study demonstrates that much the same thing happens to astrocytes, support cells that are essential to neuronal function, and whose dysfunction is implicated in many diseases. The researchers speculate that the non-neuronal cells play a vital role in nourishing the motor neurons and in scavenging toxins from the cellular environment. As with microglia, the helper role of astrocytes is altered due to mutations in the SOD1 protein.

"We tested what would happen if we removed the mutant gene from astrocytes in mouse models," said Cleveland. "What happened was it doubled the lifespan of the mouse after the onset of ALS."

Astrocytes are key components in balancing the neurotransmitter signals that neurons use to communicate. To examine whether mutant SOD1 damage to the astrocytes contributes to disease progression in ALS, researchers in the Cleveland lab used a genetic trick to excise the mutant SOD1 gene, but only in astrocytes. Reduction of the disease-causing mutant SOD1 in astrocytes did not slow disease onset or early disease; however, the late stage of the disease was extended, nearly doubling the normal life expectancy of a mouse with ALS.

"Silencing the mutant gene in the astrocytes not only helps protect the motor neuron, but delays activation of mutant microglia that act to accelerate the progression of ALS," said Cleveland.

The findings show that mutant astrocytes are likely to be viable targets to slow the rate of disease spread and extend the life of patients with ALS. Cleveland added that this may prove especially important news to researchers in California and elsewhere working with stem cells. "This gives scientists a good idea of what cells should be replaced using stem cell therapy. Astrocytes are very likely much easier to replace than the slow-growing motor neuron."

Additional contributors to the study include Koji Yamanaka, Seung Joo Chun and Severine Boillee, Ludwig Institute for Cancer Research and UCSD Department of Medicine and Neuroscience; Noriko Fujimore-Tonou and Hirofumi Yamashita, Yamanaka Research Unit, RIKEN Brain Science Institute, Saitama, Japan; David H. Gutmann, Department of Neurology, Washington University, St. Louis; Ryosuke Takahashi, Department of Neurology, Kyoto University, Japan; and Hidemi Misawa, Department of Pharmacology, Kyoritsu University of Pharmacy, Tokyo.

The work was supposed by grants from the National Institutes of Health, the Packard ALS Center at Johns Hopkins University, the Muscular Dystrophy Association, the Uehara Memorial Foundation, the Nakabayashi Trust for ALS Research, and the Ministry of Education, Culture, Sports Science and Technology of Japan.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Targeting Astrocytes Slows Disease Progression In Lou Gehrig's Disease, Study Shows." ScienceDaily. ScienceDaily, 4 February 2008. <www.sciencedaily.com/releases/2008/02/080203152136.htm>.
University of California - San Diego. (2008, February 4). Targeting Astrocytes Slows Disease Progression In Lou Gehrig's Disease, Study Shows. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2008/02/080203152136.htm
University of California - San Diego. "Targeting Astrocytes Slows Disease Progression In Lou Gehrig's Disease, Study Shows." ScienceDaily. www.sciencedaily.com/releases/2008/02/080203152136.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins