Featured Research

from universities, journals, and other organizations

Novel Organic Metal Hybrids Will Revolutionize Materials Science And Chemical Engineering

Date:
February 27, 2008
Source:
European Science Foundation
Summary:
A novel class of hybrid materials made from metals and organic compounds is changing the face of solid state chemistry and materials science just 10 years after its discovery, with applications already in safe storage of highly inflammable gases such as hydrogen and methane.

A novel class of hybrid materials made from metals and organic compounds is changing the face of solid state chemistry and materials science just 10 years after its discovery, with applications already in safe storage of highly inflammable gases such as hydrogen and methane. Europe is aiming to capitalise on core strengths in the field and build critical mass by combining the diverse range of skills required within a coherent research network, following a major workshop organised by the European Science Foundation (ESF).

The materials called MOFs (Metal Organic Frameworks) represent one of the biggest breakthroughs in solid state science whose potential is only just being realised, according to the ESF workshop convenor Gérard Férey. "The domain is currently exploding, and there are so many potential applications that it is difficult to decide how to prioritise them. The only limit is our imagination," said Férey.

There is no doubt though that the first big application of MOFs - storage of gases - will be highly important, given the urgency of developing alternatives to fossil fuels for automobiles. "For hydrogen storage, MOFs are already used, and many carmakers have these products in prototypes," said Férey.

MOFs are porous materials with microscopic sized holes, resembling honeycombs at molecular dimensions. This property of having astronomical numbers of tiny holes within a relatively small volume can be exploited in various ways, one of which is as a repository for gases. Gas molecules diffuse into the MOF solid and are contained within its pores. In the case of gas storage, MOFs offer the crucial advantage of soaking up some of the gas pressure exerted by the molecules.

This makes hydrogen derived from non-fossil energy sources such as fuel cells, or even genetically engineered plants, potentially viable as a fuel for cars while the alternative of pressurised canisters is not. The key difference is that the amount of gas stored in a conventional cylinder at say 200 atmospheres pressure could be accommodated in an MOF vessel of the same size at just 30 atmospheres, which is much safer.

The porous nature of MOFs enables them to be exploited in quite another way as catalysts to accelerate chemical reactions for a wide variety of materials production and pharmaceutical applications, although this field, as Férey noted, is still in its infancy. Yet already the field is gaining interest beyond academia from serious companies, with a significant development at the ESF workshop being the presence and support of German chemicals giant BASF. This in turn has provided high endorsement of the field's potential and has stimulated interest from other companies, according to Férey.

But several challenges remain before this potential can be realised, the first one being to assemble research and development teams with the right body of skills. As Férey noted, many of the skills already exist but the researchers need to expand their horizons and focus more broadly on the big picture beyond their specialised domains. There is also the technical challenge of learning first how these materials are formed, and then applying the knowledge to design MOFs matched to specific requirements. MOFs are crystalline solids that form in highly regular patterns from solutions, just as salts and sugars do. Researchers need to learn how to manipulate the starting conditions to obtain just the crystalline composition and arrangement they want.


Story Source:

The above story is based on materials provided by European Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

European Science Foundation. "Novel Organic Metal Hybrids Will Revolutionize Materials Science And Chemical Engineering." ScienceDaily. ScienceDaily, 27 February 2008. <www.sciencedaily.com/releases/2008/02/080218134605.htm>.
European Science Foundation. (2008, February 27). Novel Organic Metal Hybrids Will Revolutionize Materials Science And Chemical Engineering. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2008/02/080218134605.htm
European Science Foundation. "Novel Organic Metal Hybrids Will Revolutionize Materials Science And Chemical Engineering." ScienceDaily. www.sciencedaily.com/releases/2008/02/080218134605.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins