Featured Research

from universities, journals, and other organizations

Speed Of Light: Sub-femtosecond Stop Watch For 'Photon Finish' Races

Date:
March 17, 2008
Source:
National Institute of Standards and Technology
Summary:
Using a system that can compare the travel times of two photons with sub-femtosecond precision, scientists have found a remarkably large difference in the time it takes photons to pass through nearly identical stacks of materials with different arrangements of refractive layers. The technique could provide an empirical answer to a long-standing puzzle over how fast light crosses narrow gaps that do not permit the passage of conventional electromagnetic waves.

Diagram of two stack configurations with odd numbers of layers. Blue layers have a high index of refraction, white layers a low. The stacks are nearly identical with the exception of where the extra layer is deposited.
Credit: NIST

Using a system that can compare the travel times of two photons with sub-femtosecond precision, scientists at the Joint Quantum Institute (a partnership of the National Institute of Standards and Technology (NIST) and the University of Maryland) and Georgetown University have found a remarkably large difference in the time it takes photons to pass through nearly identical stacks of materials with different arrangements of refractive layers. The technique, described at the annual March Meeting of the American Physical Society,* ultimately could provide an empirical answer to a long-standing puzzle over how fast light crosses narrow gaps that do not permit the passage of conventional electromagnetic waves.

Related Articles


Alan Migdall and his colleagues set up a race course using "correlated" pairs of photons--indistinguishable photons created simultaneously. One photon passes through the sample to be tested while the other is directed along a path of adjustable length. The finish line is a so-called Hong-Ou-Mandel interferometer, a beamsplitter that the photons strike obliquely. Individual photons have a fifty-fifty chance of either passing through the beamsplitter or bouncing off it, but when two correlated photons arrive simultaneously, the rules of physics say they both must come out in the same direction.

As a result, this arrangement can detect when the first photon has taken exactly as long to get through the test object as the second photon did to traverse its path. This changes the difficult problem of measuring extraordinarily short intervals of time into the easier one of measuring distances. Through refinements to the design of their interferometer, Migdall and his colleagues can measure simultaneity with sub-femtosecond precision.

The team measured photon transit times through stacks consisting of alternating layers of material with high and low refractive index--the kind of arrangement that makes a light beam seem to bend as it crosses the boundary.

The new experiments verify the theoretical prediction** that photon transit time will vary significantly depending on how you arrange the stack. Migdall and his team found that a photon takes about 20 femtoseconds less to get through a stack of 31 layers, totaling a few microns across, when the stack begins and ends with high refractive index layers rather than the opposite. The shorter time delay is apparently superluminal i.e., shorter than the time needed for light in a vacuum to traverse the same distance. (This is possible because of a loophole in the speed-of-light limit that says that some wave-related phenomena can propagate superluminally if they do not transmit equivalent information faster than the speed of light.)

The team hopes to move on to a more perplexing case. Light striking the boundary between two refractive materials at a sufficiently shallow angle glances off completely as a reflection rather than passing through, but also creates a decaying field known as an evanescent wave on the other side of the boundary. This evanescent wave can reach across a narrow gap and strike up a new light wave in an adjacent medium. Theorists have presented discrepant calculations of how long light takes to traverse such a gap, but Migdall says the new system should be precise enough to measure such transits directly.

* N. Rutter, S.V. Polyakov, P. Lett amd A. Migdall. Photon tunneling through dielectric bandgaps and evanescent gaps. Presented at the American Physical Society March Meeting, New Orleans, La. Session: W14.00010.

** S.V. Polyakov, D. Papoular, C. McCormick, P. Lett, D. Josell and A. Migdall. Photon Tunneling through Evanescent Gaps and Bandgaps, Slow and Fast Light, Salt Lake City, Utah, July 2007


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Speed Of Light: Sub-femtosecond Stop Watch For 'Photon Finish' Races." ScienceDaily. ScienceDaily, 17 March 2008. <www.sciencedaily.com/releases/2008/03/080313185734.htm>.
National Institute of Standards and Technology. (2008, March 17). Speed Of Light: Sub-femtosecond Stop Watch For 'Photon Finish' Races. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2008/03/080313185734.htm
National Institute of Standards and Technology. "Speed Of Light: Sub-femtosecond Stop Watch For 'Photon Finish' Races." ScienceDaily. www.sciencedaily.com/releases/2008/03/080313185734.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins