Featured Research

from universities, journals, and other organizations

Winking Star: First Step Of Earth-Like Planet Formation Observed

Date:
March 15, 2008
Source:
Wesleyan University
Summary:
For the first time, astronomers have observed the initial phase in the formation of an earth-like planet. Astronomers observed that a protoplanetary disk, or ring, around the binary star known as KH 15D, is composed of solid particles larger than what is usually observed in space. For hundreds of years, scientists have been theorizing that Earth-like planets form when gas and dust around a star get compressed into these disks and the material begins to coalesce into planets.

The binary stars orbit inside a protoplanetary disk or ring that extends out to roughly the size of Jupiter's orbit.
Credit: Image courtesy of Wesleyan University

For the first time, astronomers have observed the initial phase in the formation of an earth-like planet.

The discovery, highlighted in the March 13th issue of Nature, was documented by a team of astronomers led by William Herbst, the Van Vleck Professor of Astronomy professor at Wesleyan, and Catrina Hamilton PhD '03, professor of physics and astronomy at Dickinson College.

What Herbst and other astronomers on his team observed was that a protoplanetary disk, or ring, around the binary star known as KH 15D, is composed of solid particles larger than what is usually observed in space.

"For hundreds of years, scientists have been theorizing that Earth-like planets form when gas and dust around a star get compressed into these disks and the material begins to coalesce into planets. But until now we never had the ability to study this process in detail," Herbst said. "The unique geometry presented by KH 15D and the way the light was being reflected off the disk allowed us to get a good look at the structure of the disk .We were amazed at what we saw."

The disk orbiting KH 15D is at least the size of Jupiter's orbit and composed of sand-sized grains that have grown from microscopic-sized particles to form the larger grains. These grains are now approximately 1 mm in diameter, much larger than the tiny particles typically seen in space. This is also the characteristic size of "chondrules," small glassy spherules that are found in the most primitive solar system, the so-called carbonaceous chondrite meteorites.

The observations of the disk were made over several years using some of the largest telescopes in the world, including the 10-meter telescope of the W.M. Keck Observatory in Hawaii. More modest telescopes, including the one at Wesleyan University's Van Vleck observatory and the Maidanak Observatory in Uzbekistan, were also used in the study.

Located approximately 2,400 light years from earth and also known within the astronomical community as the "winking star," KH 15D was first documented in 1995 by Herbst and his then-graduate student Kristin Kearns. An ensuing Ph.D. thesis by Herbst student Catrina Hamilton, now on the faculty of Dickinson College, further solidified the importance of this star and brought it to the attention of the astronomical community. In 2004, two groups of astronomers on opposite coasts showed that KH 15D's winking was a result binary star with an orbiting period of 48.36 days within a large disk. The winking effect was generated as one of the stars alternately rose above and set below the disk.

What Herbst, Hamilton and the rest of the team observed recently is that the disk is slowly hiding the stars from view and putting them in a permanent state of faintness, though still visible by the reflection off the disk.

"Because of how the light is being reflected there are opportunities to make observations about the chemical composition of these sand-like particles," Herbst said. "That's very exciting because it opens up so many doors for new type of research on this disk."

Support for the work has come over the years from NASA's Origins of Solar Systems program and from the W. M. Keck Observatory Principal Investigator's Fund.

A Flash animation of what the team observed can be seen here: http://www.wesleyan.edu/newsrel/kh15d_animation.html


Story Source:

The above story is based on materials provided by Wesleyan University. Note: Materials may be edited for content and length.


Cite This Page:

Wesleyan University. "Winking Star: First Step Of Earth-Like Planet Formation Observed." ScienceDaily. ScienceDaily, 15 March 2008. <www.sciencedaily.com/releases/2008/03/080314163401.htm>.
Wesleyan University. (2008, March 15). Winking Star: First Step Of Earth-Like Planet Formation Observed. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2008/03/080314163401.htm
Wesleyan University. "Winking Star: First Step Of Earth-Like Planet Formation Observed." ScienceDaily. www.sciencedaily.com/releases/2008/03/080314163401.htm (accessed August 1, 2014).

Share This




More Space & Time News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Study Says The Moon Was Deformed Early In Its History

New Study Says The Moon Was Deformed Early In Its History

Newsy (July 31, 2014) Scientists say when the moon was young, it was deformed by the Earth's gravitational pull, which gave it a lemon-like shape. Video provided by Newsy
Powered by NewsLook.com
Supply Ship Takes Off for International Space Station

Supply Ship Takes Off for International Space Station

AFP (July 30, 2014) The European Space Agency's fifth Automated Transfer Vehicle (ATV-5) is takes off to the International Space Station on an Ariane 5 rocket from French Guiana. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Raw: Rocket Launches Into Space With Cargo Ship

Raw: Rocket Launches Into Space With Cargo Ship

AP (July 30, 2014) Arianespace launched a rocket Tuesday from French Guiana carrying a robotic cargo ship to deliver provisions to the International Space Station. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins